ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy Regularized Motion Planning via Stein Variational Inference

156   0   0.0 ( 0 )
 نشر من قبل Alexander Lambert
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many Imitation and Reinforcement Learning approaches rely on the availability of expert-generated demonstrations for learning policies or value functions from data. Obtaining a reliable distribution of trajectories from motion planners is non-trivial, since it must broadly cover the space of states likely to be encountered during execution while also satisfying task-based constraints. We propose a sampling strategy based on variational inference to generate distributions of feasible, low-cost trajectories for high-dof motion planning tasks. This includes a distributed, particle-based motion planning algorithm which leverages a structured graphical representations for inference over multi-modal posterior distributions. We also make explicit connections to both approximate inference for trajectory optimization and entropy-regularized reinforcement learning.

قيم البحث

اقرأ أيضاً

Model predictive control (MPC) schemes have a proven track record for delivering aggressive and robust performance in many challenging control tasks, coping with nonlinear system dynamics, constraints, and observational noise. Despite their success, these methods often rely on simple control distributions, which can limit their performance in highly uncertain and complex environments. MPC frameworks must be able to accommodate changing distributions over system parameters, based on the most recent measurements. In this paper, we devise an implicit variational inference algorithm able to estimate distributions over model parameters and control inputs on-the-fly. The method incorporates Stein Variational gradient descent to approximate the target distributions as a collection of particles, and performs updates based on a Bayesian formulation. This enables the approximation of complex multi-modal posterior distributions, typically occurring in challenging and realistic robot navigation tasks. We demonstrate our approach on both simulated and real-world experiments requiring real-time execution in the face of dynamically changing environments.
Decision making under uncertainty is critical to real-world, autonomous systems. Model Predictive Control (MPC) methods have demonstrated favorable performance in practice, but remain limited when dealing with complex probability distributions. In th is paper, we propose a generalization of MPC that represents a multitude of solutions as posterior distributions. By casting MPC as a Bayesian inference problem, we employ variational methods for posterior computation, naturally encoding the complexity and multi-modality of the decision making problem. We present a Stein variational gradient descent method to estimate the posterior directly over control parameters, given a cost function and observed state trajectories. We show that this framework leads to successful planning in challenging, non-convex optimal control problems.
186 - Jun Han , Fan Ding , Xianglong Liu 2020
Gradient-based approximate inference methods, such as Stein variational gradient descent (SVGD), provide simple and general-purpose inference engines for differentiable continuous distributions. However, existing forms of SVGD cannot be directly appl ied to discrete distributions. In this work, we fill this gap by proposing a simple yet general framework that transforms discrete distributions to equivalent piecewise continuous distributions, on which the gradient-free SVGD is applied to perform efficient approximate inference. The empirical results show that our method outperforms traditional algorithms such as Gibbs sampling and discontinuous Hamiltonian Monte Carlo on various challenging benchmarks of discrete graphical models. We demonstrate that our method provides a promising tool for learning ensembles of binarized neural network (BNN), outperforming other widely used ensemble methods on learning binarized AlexNet on CIFAR-10 dataset. In addition, such transform can be straightforwardly employed in gradient-free kernelized Stein discrepancy to perform goodness-of-fit (GOF) test on discrete distributions. Our proposed method outperforms existing GOF test methods for intractable discrete distributions.
81 - Charles K. Fisher 2014
I propose a variational approach to maximum pseudolikelihood inference of the Ising model. The variational algorithm is more computationally efficient, and does a better job predicting out-of-sample correlations than $L_2$ regularized maximum pseudol ikelihood inference as well as mean field and isolated spin pair approximations with pseudocount regularization. The key to the approach is a variational energy that regularizes the inference problem by shrinking the couplings towards zero, while still allowing some large couplings to explain strong correlations. The utility of the variational pseudolikelihood approach is illustrated by training an Ising model to represent the letters A-J using samples of letters from different computer fonts.
We integrate sampling-based planning techniques with funnel-based feedback control to develop KDF, a new framework for solving the kinodynamic motion-planning problem via funnel control. The considered systems evolve subject to complex, nonlinear, an d uncertain dynamics (aka differential constraints). Firstly, we use a geometric planner to obtain a high-level safe path in a user-defined extended free space. Secondly, we develop a low-level funnel control algorithm that guarantees safe tracking of the path by the system. Neither the planner nor the control algorithm use information on the underlying dynamics of the system, which makes the proposed scheme easily distributable to a large variety of different systems and scenarios. Intuitively, the funnel control module is able to implicitly accommodate the dynamics of the system, allowing hence the deployment of purely geometrical motion planners. Extensive computer simulations and experimental results with a 6-DOF robotic arm validate the proposed approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا