ﻻ يوجد ملخص باللغة العربية
The asymptotic equivalence of canonical and microcanonical ensembles is a central concept in statistical physics, with important consequences for both theoretical research and practical applications. However, this property breaks down under certain circumstances. The most studied violation of ensemble equivalence requires phase transitions, in which case it has a `restricted (i.e. confined to a certain region in parameter space) but `strong (i.e. characterized by a difference between the entropies of the two ensembles that is of the same order as the entropies themselves) form. However, recent research on networks has shown that the presence of an extensive number of local constraints can lead to ensemble nonequivalence even in the absence of phase transitions. This occurs in a `weak (i.e. leading to a subleading entropy difference) but remarkably `unrestricted (i.e. valid in the entire parameter space) form. Here we look for more general manifestations of ensemble nonequivalence in arbitrary ensembles of matrices with given margins. These models have widespread applications in the study of spatially heterogeneous and/or temporally nonstationary systems, with consequences for the analysis of multivariate financial and neural time-series, multi-platform social activity, gene expression profiles and other Big Data. We confirm that ensemble nonequivalence appears in `unrestricted form throughout the entire parameter space due to the extensivity of local constraints. Surprisingly, at the same time it can also exhibit the `strong form. This novel, simultaneously `strong and unrestricted form of nonequivalence is very robust and imposes a principled choice of the ensemble. We calculate the proper mathematical quantities to be used in real-world applications.
The asymptotic (non)equivalence of canonical and microcanonical ensembles, describing systems with soft and hard constraints respectively, is a central concept in statistical physics. Traditionally, the breakdown of ensemble equivalence (EE) has been
We numerically study the unitary time evolution of a nonintegrable model of hard-core bosons with an extensive number of local Z2 symmetries. We find that the expectation values of local observables in the stationary state are described better by the
The microcanonical entropy s(e,m) as a function of the energy e and the magnetization m is computed analytically for the anisotropic quantum Heisenberg model with Curie-Weiss-type interactions. The result shows a number of interesting properties whic
Completely open systems can exchange heat, work, and matter with the environment. While energy, volume, and number of particles fluctuate under completely open conditions, the equilibrium states of the system, if they exist, can be specified using th
This paper studies a stylized model of local interaction where agents choose from an ever increasing set of vertically ranked actions, e.g. technologies. The driving forces of the model are infrequent upward shifts (``updates), followed by a rapid pr