ﻻ يوجد ملخص باللغة العربية
Based on evolutionary crystal structure searches in combination with ab initio calculations, we predict an unusual structural phase of the superconducting LaH$_{10}$ that is stable from about 250 GPa to 425 GPa pressure. This new phase belongs to a trigonal $Rbar{3}m$ crystal lattice with an atypical cell angle, $alpha_{rhom}$ $sim$ 24.56$^{circ}$. We find that the new structure contains three units of LaH$_{10}$ in its primitive cell, unlike the previously known trigonal phase, where primitive cell contains only one LaH$_{10}$ unit. In this phase, a 32-H atoms cage encapsulates La atoms, analogous to the lower pressure face centred cubic phase. However, the hydrogen cages of the trigonal phase consist of quadrilaterals and hexagons, in contrast to the cubic phase, that exhibits squares and regular hexagons. Surprisingly, the shortest H-H distance in the new phase is shorter than that of the lower pressure cubic phase and of atomic hydrogen metal. We find a structural phase transition from trigonal to hexagonal at 425 GPa, where the hexagonal crystal lattice coincides with earlier predictions. Solving the anisotropic Migdal-Eliashberg equations we obtain that the predicted trigonal phase (for standard values of the Coulomb pseudopotential) is expected to become superconducting at a critical temperature of about 175 K, which is less than $T_c sim$250 K measured for cubic LaH$_{10}$.
Recently superconductivity has been discovered at around 200~K in a hydrogen sulfide system and around 260~K in a lanthanum hydride system, both under pressures of about 200 GPa. These record-breaking transition temperatures bring within reach the lo
Hydrogen has been the essential element in the development of atomic and molecular physics1). Moving to the properties of dense hydrogen has appeared a good deal more complex than originally thought by Wigner and Hungtinton in their seminal paper pre
We have constructed a pressure$-$temperature ($P-T$) phase diagram of $P$-induced superconductivity in EuFe$_2$As$_2$ single crystals, via resistivity ($rho$) measurements up to 3.2 GPa. As hydrostatic pressure is applied, an antiferromagnetic (AF) t
The dependence of the superconducting transition temperature T_{c} on nearly hydrostatic pressure has been determined to 67 GPa in an ac susceptibility measurement for a Li sample embedded in helium pressure medium. With increasing pressure, supercon
Room-temperature superconductivity has been one of the most challenging subjects in modern physics. Recent experiments reported that lanthanum hydride LaH$_{10{pm}x}$ ($x$$<$1) raises a superconducting transition temperature $T_{rm c}$ up to ${sim}$2