ﻻ يوجد ملخص باللغة العربية
This paper studies a planar multiplayer Homicidal Chauffeur reach-avoid differential game, where each pursuer is a Dubins car and each evader has simple motion. The pursuers aim to protect a goal region cooperatively from the evaders. Due to the high-dimensional strategy space among pursuers, we decompose the whole game into multiple one-pursuer-one-evader subgames, each of which is solved in an analytical approach instead of solving Hamilton-Jacobi-Isaacs equations. For each subgame, an evasion region (ER) is introduced, based on which a pursuit strategy guaranteeing the winning of a simple-motion pursuer under specific conditions is proposed. Motivated by the simple-motion pursuer, a strategy for a Dubins-car pursuer is proposed when the pursuer-evader configuration satisfies separation condition (SC) and interception orientation (IO). The necessary and sufficient condition on capture radius, minimum turning radius and speed ratio to guarantee the pursuit winning is derived. When the IO is not satisfied (Non-IO), a heading adjustment pursuit strategy is proposed, and the condition to achieve IO within a finite time, is given. Then, a two-step pursuit strategy is proposed for the SC and Non-IO case. A non-convex optimization problem is introduced to give a condition guaranteeing the winning of the pursuer. A polynomial equation gives a lower bound of the non-convex problem, providing a sufficient and efficient pursuit winning condition. Finally, these pairwise outcomes are collected for the pursuer-evader matching. Simulations are provided to illustrate the theoretical results.
We prove that optimal strategies exist in every perfect-information stochastic game with finitely many states and actions and a tail winning condition.
Conditional Value at Risk (CVaR) is widely used to account for the preferences of a risk-averse agent in the extreme loss scenarios. To study the effectiveness of randomization in interdiction games with an interdictor that is both risk and ambiguity
Since Press and Dysons ingenious discovery of ZD (zero-determinant) strategy in the repeated Prisoners Dilemma game, several studies have confirmed the existence of ZD strategy in repeated multiplayer social dilemmas. However, few researches study th
We study the class of reach-avoid dynamic games in which multiple agents interact noncooperatively, and each wishes to satisfy a distinct target condition while avoiding a failure condition. Reach-avoid games are commonly used to express safety-criti
In this paper we introduce a novel flow representation for finite games in strategic form. This representation allows us to develop a canonical direct sum decomposition of an arbitrary game into three components, which we refer to as the potential, h