ﻻ يوجد ملخص باللغة العربية
Electric fields can spontaneously decay via the Schwinger effect, the nucleation of a charged particle-anti particle pair separated by a critical distance $d$. What happens if the available distance is smaller than $d$? Previous work on this question has produced contradictory results. Here, we study the quantum evolution of electric fields when the field points in a compact direction with circumference $L < d$ using the massive Schwinger model, quantum electrodynamics in one space dimension with massive charged fermions. We uncover a new and previously unknown set of instantons that result in novel physics that disagrees with all previous estimates. In parameter regimes where the field value can be well-defined in the quantum theory, generic initial fields $E$ are in fact stable and do not decay, while initial values that are quantized in half-integer units of the charge $E = (k/2) g$ with $kin mathbb Z$ oscillate in time from $+(k/2) g$ to $-(k/2) g$, with exponentially small probability of ever taking any other value. We verify our results with four distinct techniques: numerically by measuring the decay directly in Lorentzian time on the lattice, numerically using the spectrum of the Hamiltonian, numerically and semi-analytically using the bosonized description of the Schwinger model, and analytically via our instanton estimate.
A number of physical processes occurring in a flat one-dimensional graphene structure under the action of strong time-dependent electric fields are considered. It is assumed that the Dirac model can be applied to the graphene as a subsystem of the ge
Recently, non-perturbative approximate solutions were presented that go beyond the well-known mean-field resummation. In this work, these non-perturbative approximations are used to calculate finite temperature equilibrium properties for scalar $phi^
We study the vacuum pair production by a time-dependent strong electric field based on the exact WKB analysis. We identify the generic structure of a Stokes graph for systems with the vacuum pair production and show that the number of produced pairs
We study the non-perturbative production of gluon pairs from a constant SU(3) chromo-electric background field via the Schwinger mechanism. We fix the covariant background gauge with an arbitrary gauge parameter alpha. We determine the transverse mom
We study the time-dependent solitonic gauge fields in scalar QED, in which a charged particle has the energy of reflectionless P{o}sch-Teller potential with natural quantum numbers. Solving the quantum master equation for quadratic correlation functi