ﻻ يوجد ملخص باللغة العربية
The notion of persistence partial matching, as a generalization of partial matchings between persistence modules, is introduced. We study how to obtain a persistence partial matching $mathcal{G}_f$, and a partial matching $mathcal{M}_f$, induced by a morphism $f$ between persistence modules, both being linear with respect to direct sums of morphisms. Some of their properties are also provided, including their stability after a perturbation of the morphism $f$, and their relationship with other induced partial matchings already defined in TDA.
In this paper, we study how basis-independent partial matchings induced by morphisms between persistence modules (also called ladder modules) can be defined. Besides, we extend the notion of basis-independent partial matchings to the situation of a p
The classical persistence algorithm virtually computes the unique decomposition of a persistence module implicitly given by an input simplicial filtration. Based on matrix reduction, this algorithm is a cornerstone of the emergent area of topological
We give a self-contained treatment of the theory of persistence modules indexed over the real line. We give new proofs of the standard results. Persistence diagrams are constructed using measure theory. Linear algebra lemmas are simplified using a ne
We develop some aspects of the homological algebra of persistence modules, in both the one-parameter and multi-parameter settings, considered as either sheaves or graded modules. The two theories are different. We consider the graded module and sheaf
In this paper we study the properties of the homology of different geometric filtered complexes (such as Vietoris-Rips, Cech and witness complexes) built on top of precompact spaces. Using recent developments in the theory of topological persistence