ترغب بنشر مسار تعليمي؟ اضغط هنا

Extending the spin coherence lifetimes of 167Er3+:Y2SiO5 at Sub-Kelvin Temperatures

285   0   0.0 ( 0 )
 نشر من قبل Jianyin Huang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Er3+:Y2SiO5 is a material of particular interest due to its compatibility in realizing telecom-band optical quantum memories and in the implementation of quantum transducers interfacing optical communication with quantum computers working in the microwave regime. Extending the coherence lifetimes of the electron spins and the nuclear spins is the essential prerequisite for implementing efficient quantum information processing. The electron spin coherence time of this material is so far limited to several microseconds, and there are significant challenges in optimizing coherence lifetimes simultaneously for both the electron and nuclear spins. Here we perform to our knowledge the first pulsed-ENDOR (Electron Nuclear DOuble Resonance) investigation for an Er3+-doped material at sub-Kelvin temperatures, based on a home-built sub-Kelvin pulsed ENDOR spectrometer. At the lowest working temperature, the electron spin coherence time reaches 273 us, which is enhanced by more than 40 times compared with the previous results. In the sub-Kelvin regime, a rapid increase in the nuclear spin coherence time is observed, and the longest coherence time of 738 us is obtained. These results are obtained with the compatibility of fast and efficient operations, which establish the foundation for quantum storage and quantum transduction from microwave to optical frequencies at telecom C-band.

قيم البحث

اقرأ أيضاً

Er:YSO crystal is promising candidate with great variety of its potential applications in quantum information processing and quantum communications ranging from optical/microwave quantum memories to circuit QED and microwave-to-optics frequency conve rters. Some of the above listed applications require ultra-low temperature environment, i.e. temperatures $Tlesssim0.1~$K. Most of the experiments with erbium doped crystals have been so far carried out at temperatures above 1.5 K. Therefore, only little information is known about Er:YSO coherence properties at millikelvins. Here, we investigate optical decoherence of $^{167}$Er:Y$_2$SiO$_5$ crystal by performing 2- and 3-pulse echo experiments at sub-Kelvin temperature range and at weak and moderate magnetic fields. We show that the deep freezing of the crystal results in an increase of optical coherence time by one order of magnitude below 1.5 Kelvin at the field of $sim$0.2 T. We further describe the detailed investigation of the decoherence mechanisms in this regime.
Penning ionization reactions in merged beams with precisely controlled collision energies have been shown to accurately probe quantum mechanical effects in reactive collisions. A complete microscopic understanding of the reaction is, however, faced w ith two major challenges---the highly excited character of the reactions entrance channel and the limited precision of even the best state-of-the-art ab initio potential energy surfaces. Here, we suggest photoassociation spectroscopy as a tool to identify the character of orbiting resonances in the entrance channel and probe the ionization width as a function of inter-particle separation. We introduce the basic concept and discuss the general conditions under which this type of spectroscopy will be successful.
We characterize the optical coherence and energy-level properties of the 795 nm $^3$H$_6$ to $^3$H$_4$ transition of Tm$^{3+}$ in a Ti$^{4+}$:LiNbO$_{3}$ waveguide at temperatures as low as 0.65 K. Coherence properties are measured with varied temper ature, magnetic field, optical excitation power and wavelength, and measurement time-scale. We also investigate nuclear spin-induced hyperfine structure and population dynamics with varying magnetic field and laser excitation power. Except for accountable differences due to difference Ti$^{4+}$ and Tm$^{3+}$-doping concentrations, we find that the properties of Tm$^{3+}$:Ti$^{4+}$:LiNbO$_{3}$ produced by indiffusion doping are consistent with those of a bulk-doped Tm$^{3+}$:LiNbO$_{3}$ crystal measured under similar conditions. Our results, which complement previous work in a narrower parameter space, support using rare-earth-ions for integrated optical and quantum signal processing.
We characterize the 795 nm $^3$H$_6$ to $^3$H$_4$ transition of Tm$^{3+}$ in a Ti$^{4+}$:LiNbO$_{3}$ waveguide at temperatures as low as 800 mK. Coherence and hyperfine population lifetimes -- up to 117 $mu$s and 2.5 hours, respectively -- exceed tho se at 3 K at least ten-fold, and are equivalent to those observed in a bulk Tm$^{3+}$:LiNbO$_{3}$ crystal under similar conditions. We also find a transition dipole moment that is equivalent to that of the bulk. Finally, we prepare a 0.5 GHz-bandwidth atomic frequency comb of finesse $>$2 on a vanishing background. These results demonstrate the suitability of rare-earth-doped waveguides created using industry-standard Ti-indiffusion in LiNbO$_3$ for on-chip quantum applications.
We determine the thermal conductance of thin niobium (Nb) wires on a silica substrate in the temperature range of 0.1 - 0.6 K using electron thermometry based on normal metal-insulator-superconductor tunnel junctions. We find that at 0.6 K, the therm al conductance of Nb is two orders of magnitude lower than that of Al in the superconducting state, and two orders of magnitude below the Wiedemann-Franz conductance calculated with the normal state resistance of the wire. The measured thermal conductance exceeds the prediction of the Bardeen-Cooper-Schrieffer theory, and demonstrates a power law dependence on temperature as $T^{4.5}$, instead of an exponential one. At the same time, we monitor the temperature profile of the substrate along the Nb wire to observe possible overheating of the phonon bath. We show that Nb can be successfully used for thermal insulation in a nanoscale circuit while simultaneously providing an electrical connection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا