ﻻ يوجد ملخص باللغة العربية
Complete set of modes and the Hadamard function are constructed for a scalar field inside and outside a sphere in (D+1)-dimensional de Sitter spacetime foliated by negative constant curvature spaces. We assume that the field obeys Robin boundary condition on the sphere. The contributions in the Hadamard function induced by the sphere are explicitly separated and the vacuum expectation values (VEVs) of the field squared and energy-momentum tensor are investigated for the hyperbolic vacuum. In the flat spacetime limit the latter is reduced to the conformal vacuum in the Milne universe and is different from the maximally symmetric Bunch-Davies vacuum state. The vacuum energy-momentum tensor has a nonzero off-diagonal component that describes the energy flux in the radial direction. The latter is a purely sphere-induced effect and is absent in the boundary-free geometry. Depending on the constant in Robin boundary condition and also on the radial coordinate, the energy flux can be directed either from the sphere or towards the sphere. At early stages of the cosmological expansion the effects of the spacetime curvature on the sphere-induced VEVs are weak and the leading terms in the corresponding expansions coincide with those for a sphere in the Milne universe. The influence of the gravitational field is essential at late stages of the expansion. Depending on the field mass and the curvature coupling parameter, the decay of the sphere-induced VEVs, as functions of the time coordinate, is monotonic or damping oscillatory. At large distances from the sphere the fall-off of the sphere-induced VEVs, as functions of the geodesic distance, is exponential for both massless and massive fields.
We report a non-trivial feature of the vacuum structure of free massive or massless Dirac fields in the hyperbolic de Sitter spacetime. Here we have two causally disconnected regions, say $R$ and $L$ separated by another region, $C$. We are intereste
The electromagnetic field correlators are evaluated around a cosmic string in background of $(D+1)$-dimensional dS spacetime assuming that the field is prepared in the Bunch-Davies vacuum state. The correlators are presented in the decomposed form wh
The influence of a spherical boundary on the vacuum fluctuations of a massive scalar field is investigated in background of $(D+1)$-dimensional Milne universe, assuming that the field obeys Robin boundary condition on the sphere. The normalized mode
We study the vacuum polarisation effects of the Dirac fermionic field induced by a pointlike global monopole located in the cosmological de Sitter spacetime. First we derive the four orthonormal Dirac modes in this background. Using these modes, we t
We investigate the quantum radiation emitted by a uniformly accelerated Unruh-DeWitt detector in de Sitter spacetime. We find that there exists a non-vanishing quantum radiation at late times in the radiation zone of the conformally flat coordinates,