ﻻ يوجد ملخص باللغة العربية
We introduce Extended Density Matrix Embedding Theory (EDMET), a static quantum embedding theory explicitly self-consistent with respect to two-body environmental interactions. This overcomes the biggest practical and conceptual limitation of more traditional one-body embedding methods, namely the lack of screening and treatment of long-range correlations. This algebraic zero-temperature embedding augments the correlated cluster with a minimal number of bosons from the random phase approximation, and admits an analytic approach to build a self-consistent Coulomb-exchange-correlation kernel. For extended Hubbard models with non-local interactions, this leads to the accurate description of phase transitions, static quantities and dynamics. We also move towards {em ab initio} systems via the Parriser--Parr--Pople model of conjugated coronene derivatives, finding good agreement with experimental optical gaps.
Quantum embedding based on the (one-electron reduced) density matrix is revisited by means of the unitary Householder transformation. While being exact and equivalent to (but formally simpler than) density matrix embedding theory (DMET) in the non-in
Based on recent progress on fermionic exchange symmetry we propose a way to develop new functionals for reduced density matrix functional theory. For some settings with an odd number of electrons, by assuming saturation of the inequalities stemming f
The idea of using fragment embedding to circumvent the high computational scaling of accurate electronic structure methods while retaining high accuracy has been a long-standing goal for quantum chemists. Traditional fragment embedding methods mainly
Quantum embedding approaches involve the self-consistent optimization of a local fragment of a strongly correlated system, entangled with the wider environment. The `energy-weighted density matrix embedding theory (EwDMET) was established recently as
We examine the performance of the density matrix embedding theory (DMET) recently proposed in [G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012)]. The core of this method is to find a proper one-body potential that generates a good tri