ﻻ يوجد ملخص باللغة العربية
We study $AdS_3 times S^1 times Y$ supersymmetric string theory backgrounds with Neveu-Schwarz-Neveu-Schwarz flux that are dual to ${cal N}=2$ superconformal theories on the boundary. We classify all worldsheet vertex operators that correspond to space-time chiral primaries. We compute space-time chiral ring structure constants for operators in the zero spectral flow sector using the operator product expansion in the worldsheet theory. We find that the structure constants take a universal form that depends only on the topological data of the ${cal N}=2$ superconformal theory on $Y$.
Sigma model in $AdS_3times S^3$ background supported by both NS-NS and R-R fluxes is one of the most distinguished integrable models. We study a class of classical string solutions for $N$-spike strings moving in $AdS_3 times S^1$ with angular moment
We present a compact formula in Mellin space for the four-point tree-level holographic correlators of chiral primary operators of arbitrary conformal weights in $(2,0)$ supergravity on $AdS_3 times S^3$, with two operators in tensor multiplet and the
We study the finite size effect of rigidly rotating strings and closed folded strings in $AdS_3times S^3$ geometry with NS-NS B-field. We calculate the classical exponential corrections to the dispersion relation of infinite size giant magnon and sin
We discuss finite-size corrections to the spiky strings in $AdS$ space which is dual to the long $mathcal{N}=4$ SYM operators of the form Tr($Delta_+ ^{J_1}phi_1Delta_+ ^{J_2}phi_2...Delta_+ ^{J_n}phi_n$). We express the finite-size dispersion relati
$SL(2,mathbb{Z})$ invariant action for probe $(m,n)$ string in $AdS_3times S^3times T^4$ with mixed three-form fluxes can be described by an integrable deformation of an one-dimensional Neumann-Rosochatius (NR) system. We present the deformed feature