ترغب بنشر مسار تعليمي؟ اضغط هنا

Unity Perception: Generate Synthetic Data for Computer Vision

129   0   0.0 ( 0 )
 نشر من قبل You-Cyuan Jhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the Unity Perception package which aims to simplify and accelerate the process of generating synthetic datasets for computer vision tasks by offering an easy-to-use and highly customizable toolset. This open-source package extends the Unity Editor and engine components to generate perfectly annotated examples for several common computer vision tasks. Additionally, it offers an extensible Randomization framework that lets the user quickly construct and configure randomized simulation parameters in order to introduce variation into the generated datasets. We provide an overview of the provided tools and how they work, and demonstrate the value of the generated synthetic datasets by training a 2D object detection model. The model trained with mostly synthetic data outperforms the model trained using only real data.

قيم البحث

اقرأ أيضاً

Analysis of faces is one of the core applications of computer vision, with tasks ranging from landmark alignment, head pose estimation, expression recognition, and face recognition among others. However, building reliable methods requires time-consum ing data collection and often even more time-consuming manual annotation, which can be unreliable. In our work we propose synthesizing such facial data, including ground truth annotations that would be almost impossible to acquire through manual annotation at the consistency and scale possible through use of synthetic data. We use a parametric face model together with hand crafted assets which enable us to generate training data with unprecedented quality and diversity (varying shape, texture, expression, pose, lighting, and hair).
Robot perception systems need to perform reliable image segmentation in real-time on noisy, raw perception data. State-of-the-art segmentation approaches use large CNN models and carefully constructed datasets; however, these models focus on accuracy at the cost of real-time inference. Furthermore, the standard semantic segmentation datasets are not large enough for training CNNs without augmentation and are not representative of noisy, uncurated robot perception data. We propose improving the performance of real-time segmentation frameworks on robot perception data by transferring features learned from synthetic segmentation data. We show that pretraining real-time segmentation architectures with synthetic segmentation data instead of ImageNet improves fine-tuning performance by reducing the bias learned in pretraining and closing the textit{transfer gap} as a result. Our experiments show that our real-time robot perception models pretrained on synthetic data outperform those pretrained on ImageNet for every scale of fine-tuning data examined. Moreover, the degree to which synthetic pretraining outperforms ImageNet pretraining increases as the availability of robot data decreases, making our approach attractive for robotics domains where dataset collection is hard and/or expensive.
133 - Laurent Perrinet 2017
The representation of images in the brain is known to be sparse. That is, as neural activity is recorded in a visual area ---for instance the primary visual cortex of primates--- only a few neurons are active at a given time with respect to the whole population. It is believed that such a property reflects the efficient match of the representation with the statistics of natural scenes. Applying such a paradigm to computer vision therefore seems a promising approach towards more biomimetic algorithms. Herein, we will describe a biologically-inspired approach to this problem. First, we will describe an unsupervised learning paradigm which is particularly adapted to the efficient coding of image patches. Then, we will outline a complete multi-scale framework ---SparseLets--- implementing a biologically inspired sparse representation of natural images. Finally, we will propose novel methods for integrating prior information into these algorithms and provide some preliminary experimental results. We will conclude by giving some perspective on applying such algorithms to computer vision. More specifically, we will propose that bio-inspired approaches may be applied to computer vision using predictive coding schemes, sparse models being one simple and efficient instance of such schemes.
This paper introduces a novel method for the representation of images that is semantic by nature, addressing the question of computation intelligibility in computer vision tasks. More specifically, our proposition is to introduce what we call a seman tic bottleneck in the processing pipeline, which is a crossing point in which the representation of the image is entirely expressed with natural language , while retaining the efficiency of numerical representations. We show that our approach is able to generate semantic representations that give state-of-the-art results on semantic content-based image retrieval and also perform very well on image classification tasks. Intelligibility is evaluated through user centered experiments for failure detection.
Advancements in deep learning have ignited an explosion of research on efficient hardware for embedded computer vision. Hardware vision acceleration, however, does not address the cost of capturing and processing the image data that feeds these algor ithms. We examine the role of the image signal processing (ISP) pipeline in computer vision to identify opportunities to reduce computation and save energy. The key insight is that imaging pipelines should be designed to be configurable: to switch between a traditional photography mode and a low-power vision mode that produces lower-quality image data suitable only for computer vision. We use eight computer vision algorithms and a reversible pipeline simulation tool to study the imaging systems impact on vision performance. For both CNN-based and classical vision algorithms, we observe that only two ISP stages, demosaicing and gamma compression, are critical for task performance. We propose a new image sensor design that can compensate for skipping these stages. The sensor design features an adjustable resolution and tunable analog-to-digital converters (ADCs). Our proposed imaging systems vision mode disables the ISP entirely and configures the sensor to produce subsampled, lower-precision image data. This vision mode can save ~75% of the average energy of a baseline photography mode while having only a small impact on vision task accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا