ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Higgs Amplitude Modes in Strongly Interacting Superfluids

129   0   0.0 ( 0 )
 نشر من قبل Junsen Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By studying the 2-dimensional Su-Schrieffer-Heeger-Bose-Hubbard model, we show the existence of topological Higgs amplitude modes in the strongly interacting superfluid phase. Using the slave boson approach, we find that, in the large filling limit, the Higgs excitations and the Goldstone excitations above the ground state are well decoupled, and both of them exhibit nontrivial topology inherited from the underlying noninteracting bands. At finite fillings, they become coupled at high energies; nevertheless, the topology of these modes are unchanged. Moreover, based on an effective action analysis, we further provide a universal physical picture for the topological character of Higgs and Goldstone modes. Our discovery of the first realization of the topological Higgs mode opens the path to novel investigations in various systems such as superconductors and quantum magnetism.



قيم البحث

اقرأ أيضاً

We study the low-energy excitations of the Bose-Hubbard model in the strongly-interacting superfluid phase using a Gutzwiller approach and extract the single-particle and single-hole excitation amplitudes for each mode. We report emergent mode-depend ent particle-hole symmetry on specific arc-shaped lines in the phase diagram connecting the well-known Lorentz-invariant limits of the Bose-Hubbard model. By tracking the in-phase particle-hole symmetric oscillations of the order parameter, we provide an answer to the long-standing question about the fate of the pure amplitude Higgs mode away from the integer-density critical point. Furthermore, we point out that out-of-phase oscillations are responsible for a full suppression of the condensate density oscillations of the gapless Goldstone mode. Possible detection protocols are also discussed.
We analyze the static and dynamical properties of a one-dimensional topological lattice, the fermionic Su-Schrieffer-Heeger model, in the presence of on-site interactions. Based on a study of charge and spin correlation functions, we elucidate the na ture of the topological edge modes, which depending on the sign of the interactions, either display particles of opposite spin on opposite edges, or a pair and a holon. This study of correlation functions also highlights the strong entanglement that exists between the opposite edges of the system. This last feature has remarkable consequences upon subjecting the system to a quench, where an instantaneous edge-to-edge signal appears in the correlation functions characterizing the edge modes. Besides, other correlation functions are shown to propagate in the bulk according to the light-cone imposed by the Lieb-Robinson bound. Our study reveals how one-dimensional lattices exhibiting entangled topological edge modes allow for a non-trivial correlation spreading, while providing an accessible platform to detect spin-charge separation using state-of-the-art experimental techniques.
We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the exte rnal confining potential of the atomic gas. We find that bosonic atoms offer more flexibility for tuning independently the parameters of the spin Hamiltonian through interatomic (intra-species) interaction which is absent for fermions due to the Pauli exclusion principle. Our formalism can have important implications for control and manipulation of the dynamics of few- and many-body quantum systems; as an illustrative example relevant to quantum computation and communication, we consider state transfer in the simplest non-trivial system of four particles representing exchange-coupled qubits.
Inspired by recent experiments on Bose-Einstein condensates in ring traps, we investigate the topological properties of the phase of a one-dimensional Bose field in the presence of both thermal and quantum fluctuations -- the latter ones being tuned by the depth of an optical lattice applied along the ring. In the regime of large filling of the lattice, quantum Monte Carlo simulations give direct access to the full statistics of fluctuations of the Bose-field phase, and of its winding number $W$ along the ring. At zero temperature the winding-number (or topological-sector) fluctuations are driven by quantum phase slips localized around a Josephson link between two lattice wells, and their { susceptibility} is found to jump at the superfluid-Mott insulator transition. At finite (but low) temperature, on the other hand, the winding number fluctuations are driven by thermal activation of nearly uniform phase twists, whose activation rate is governed by the superfluid fraction. A quantum-to-thermal crossover in winding number fluctuations is therefore exhibited by the system, and it is characterized by a conformational change in the topologically non-trivial configurations, from localized to uniform phase twists, which can be experimentally observed in ultracold Bose gases via matter-wave interference.
127 - A. Behrle , T. Harrison , J. Kombe 2019
Higgs and Goldstone modes are possible collective modes of an order parameter upon spontaneously breaking a continuous symmetry. Whereas the low-energy Goldstone (phase) mode is always stable, additional symmetries are required to prevent the Higgs ( amplitude) mode from rapidly decaying into low-energy excitations. In high-energy physics, where the Higgs boson has been found after a decades-long search, the stability is ensured by Lorentz invariance. In the realm of condensed--matter physics, particle--hole symmetry can play this role and a Higgs mode has been observed in weakly-interacting superconductors. However, whether the Higgs mode is also stable for strongly-correlated superconductors in which particle--hole symmetry is not precisely fulfilled or whether this mode becomes overdamped has been subject of numerous discussions. Experimental evidence is still lacking, in particular owing to the difficulty to excite the Higgs mode directly. Here, we observe the Higgs mode in a strongly-interacting superfluid Fermi gas. By inducing a periodic modulation of the amplitude of the superconducting order parameter $Delta$, we observe an excitation resonance at frequency $2Delta/h$. For strong coupling, the peak width broadens and eventually the mode disappears when the Cooper pairs turn into tightly bound dimers signalling the eventual instability of the Higgs mode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا