ترغب بنشر مسار تعليمي؟ اضغط هنا

Estrada index of hypergraphs via eigenvalues of tensors

128   0   0.0 ( 0 )
 نشر من قبل Changjiang Bu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A uniform hypergraph $mathcal{H}$ is corresponding to an adjacency tensor $mathcal{A}_mathcal{H}$. We define an Estrada index of $mathcal{H}$ by using all the eigenvalues $lambda_1,dots,lambda_k$ of $mathcal{A}_mathcal{H}$ as $sum_{i=1}^k e^{lambda_i}$. The bounds for the Estrada indices of uniform hypergraphs are given. And we characterize the Estrada indices of $m$-uniform hypergraphs whose spectra of the adjacency tensors are $m$-symmetric. Specially, we characterize the Estrada indices of uniform hyperstars.

قيم البحث

اقرأ أيضاً

127 - John Lenz , Dhruv Mubayi 2013
Chung, Graham, and Wilson proved that a graph is quasirandom if and only if there is a large gap between its first and second largest eigenvalue. Recently, the authors extended this characterization to k-uniform hypergraphs, but only for the so-calle d coregular k-uniform hypergraphs. In this paper, we extend this characterization to all k-uniform hypergraphs, not just the coregular ones. Specifically, we prove that if a k-uniform hypergraph satisfies the correct count of a specially defined four-cycle, then there is a gap between its first and second largest eigenvalue.
For any positive integers $r$, $s$, $m$, $n$, an $(r,s)$-order $(n,m)$-dimensional rectangular tensor ${cal A}=(a_{i_1cdots i_r}^{j_1cdots j_s}) in ({mathbb R}^n)^rtimes ({mathbb R}^m)^s$ is called partially symmetric if it is invariant under any per mutation on the lower $r$ indexes and any permutation on the upper $s$ indexes. Such partially symmetric rectangular tensor arises naturally in studying directed hypergraphs. Ling and Qi [Front. Math. China, 2013] first studied the $(p,q)$-spectral radius (or singular values) and proved a Perron-Fronbenius theorem for such tensors when both $p,q geq r+s$. We improved their results by extending to all $(p,q)$ satisfying $frac{r}{p} +frac{s}{q}leq 1$. We also proved the Perron-Fronbenius theorem for general nonnegative $(r,s)$-order $(n,m)$-dimensional rectangular tensors when $frac{r}{p}+frac{s}{q}>1$. We essentially showed that this is best possible without additional conditions on $cal A$. Finally, we applied these results to study the $(p,q)$-spectral radius of $(r,s)$-uniform directed hypergraphs.
For a nonnegative weakly irreducible tensor $mathcal{A}$, we give some characterizations of the spectral radius of $mathcal{A}$, by using the digraph of tensors. As applications, some bounds on the spectral radius of the adjacency tensor and the sign less Laplacian tensor of the $k$-uniform hypergraphs are shown.
Considering $ntimes ntimes n$ stochastic tensors $(a_{ijk})$ (i.e., nonnegative hypermatrices in which every sum over one index $i$, $j$, or $k$, is 1), we study the polytope ($Omega_{n}$) of all these tensors, the convex set ($L_n$) of all tensors i n $Omega_{n}$ with some positive diagonals, and the polytope ($Delta_n$) generated by the permutation tensors. We show that $L_n$ is almost the same as $Omega_{n}$ except for some boundary points. We also present an upper bound for the number of vertices of $Omega_{n}$.
By a tensor we mean a multidimensional array (matrix) or hypermatrix over a number field. This article aims to set an account of the studies on the permanent functions of tensors. We formulate the definitions of 1-permanent, 2-permanent, and $k$-perm anent of a tensor in terms of hyperplanes, planes and $k$-planes of the tensor; we discuss the polytopes of stochastic tensors; at end we present an extension of the generalized matrix function for tensors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا