ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetric Distribution of the Solar Photospheric Magnetic Field Values

106   0   0.0 ( 0 )
 نشر من قبل Jing-Chen Xu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the characteristics of the solar magnetic field is essential for interpreting solar activities and dynamo. In this research, we investigated the asymmetric distribution of the solar photospheric magnetic field values, using synoptic charts constructed from space-borne high-resolution magnetograms. It is demonstrated that the Lorentzian function describes the distribution of magnetic field values in the synoptic charts much better than the Gaussian function, and this should reflect the gradual decay process from strong to weak magnetic fields. The asymmetry values are calculated under several circumstances, and the results generally show two periodicities related to the variation of the solar B$_0$ angle and the solar cycle, respectively. We argue that it is the small-scale magnetic fields, the inclination of the solar axis, the emergence and evolution of magnetic flux, and the polar fields that are responsible for the features of asymmetry values. We further determined the polar field reversal time of solar cycles 23 and 24 with the flip of asymmetry values. Specifically, for cycle 24, we assert that the polar polarities of both hemispheres reversed at the same time - in March 2014; as to cycle 23, the reversal time of the S-hemisphere is March 2001, while the determination of the N-hemisphere is hampered by missing data.



قيم البحث

اقرأ أيضاً

Abrupt and permanent changes of photospheric magnetic fields have been observed during solar flares. The changes seem to be linked to the reconfiguration of magnetic fields, but their origin is still unclear. We carried out a statistical analysis of permanent line-of-sight magnetic field ($B_{rm LOS}$) changes during 18 X-, 37 M-, 19 C- and 1 B-class flares using data from Solar Dynamics Observatory/Helioseismic and Magnetic Imager. We investigated the properties of permanent changes, such as frequency, areas, and locations. We detected changes of $B_{rm LOS}$ in 59/75 flares. We find that strong flares are more likely to show changes, with all flares $ge$ M1.6 exhibiting them. For weaker flares, permanent changes are observed in 6/17 C-flares. 34.3% of the permanent changes occurred in the penumbra and 18.9% in the umbra. Parts of the penumbra appeared or disappeared in 23/75 flares. The area where permanent changes occur is larger for stronger flares. Strong flares also show a larger change of flux, but there is no dependence of the magnetic flux change on the heliocentric angle. The mean rate of change of flare-related magnetic field changes is 20.7 Mx cm$^{-2}$ min$^{-1}$. The number of permanent changes decays exponentially with distance from the polarity inversion line. The frequency of the strength of permanent changes decreases exponentially, and permanent changes up to 750 Mx cm$^{-2}$ were observed. We conclude that permanent magnetic field changes are a common phenomenon during flares, and future studies will clarify their relation to accelerated electrons, white light emission, and sunquakes to further investigate their origin.
Recently, the availability of new high-spatial and -temporal resolution observations of the solar photosphere has allowed the study of the oscillations in small magnetic elements. Small magnetic elements have been found to host a rich variety of osci llations detectable as intensity, longitudinal or transverse velocity fluctuations which have been interpreted as MHD waves. Small magnetic elements, at or below the current spatial resolution achieved by modern solar telescopes, are though to play a relevant role in the energy budget of the upper layers of the Suns atmosphere, as they are found to cover a significant fraction of the solar photosphere. Unfortunately, the limited temporal length and/or cadence of the data sets, or the presence of seeing-induced effects have prevented, so far, the estimation of the power spectra of kink-like oscillations in small magnetic elements with good accuracy. Motivated by this, we studied kink-like oscillations in small magnetic elements, by exploiting very long duration and high-cadence data acquired with the Solar Optical Telescope on board the Hinode satellite. In this work we present the results of this analysis, by studying the power spectral density of kink-like oscillations on a statistical basis. We found that small magnetic elements exhibit a large number of spectral features in the range 1-12 mHz. More interestingly, most of these spectral features are not shared among magnetic elements but represent a unique signature of each magnetic element itself.
The goal of this study is to explore a novel method for the solar photospheric magnetic field diagnostics using Stokes V widths of different magnetosensitive Fe~I spectral lines. We calculate Stokes I and V profiles of several Fe I lines based on a o ne-dimensional photospheric model VAL C using the NICOLE radiative transfer code. These profiles are used to produce calibration curves linking the intrinsic magnetic field values with the widths of blue peaks of Stokes V profiles. The obtained calibration curves are then tested using the Stokes profiles calculated for more realistic photospheric models based on MHD models of magneto-convection. It is shown that the developed Stokes V widths (SVW) method can be used with various optical and near-infrared lines. Out of six lines considered in this study, FeI 6301 line appears to be the most effective: it is sensitive to fields over ~200G and does not show any saturation up to ~2kG. Other lines considered can also be used for the photospheric field diagnostics with this method, however, only in narrower field value ranges, typically from about 100G to 700-1000G. The developed method can be a useful alternative to the classical magnetic line ratio method, particularly when the choice of lines is limited.
We investigate the vertical gradient of the magnetic field of sunspots in the photospheric layer. Independent observations were obtained with the SOT/SP onboard the Hinode spacecraft and with the TIP-2 mounted at the VTT. We apply state-of-the-art in version techniques to both data sets to retrieve the magnetic field and the corresponding vertical gradient. In the sunspot penumbrae we detected patches of negative vertical gradients of the magnetic field strength, i.e.,the magnetic field strength decreases with optical depth in the photosphere. The negative gradient patches are located in the inner and partly in the middle penumbrae in both data sets. From the SOT/SP observations, we found that the negative gradient patches are restricted mainly to the deep photospheric layers and are concentrated near the edges of the penumbral filaments. MHD simulations also show negative gradients in the inner penumbrae, also at the locations of filaments. Both in the observations and simulation negative gradients of the magnetic field vs. optical depth dominate at some radial distances in the penumbra. The negative gradient with respect to optical depth in the inner penumbrae persists even after averaging in the azimuthal direction, both in the observations and, to a lesser extent, also in MHD simulations. We interpret the observed localized presence of the negative vertical gradient of the magnetic field strength in the observations as a consequence of stronger field from spines expanding with height and closing above the weaker field inter-spines. The presence of the negative gradients with respect to optical depth after azimuthal averaging can be explained by two different mechanisms: the high corrugation of equal optical depth surfaces and the cancellation of polarized signal due to the presence of unresolved opposite polarity patches in the deeper layers of the penumbra.
Magnetic flux generated and intensified by the solar dynamo emerges into the solar atmosphere, forming active regions (ARs) including sunspots. Existing theories of flux emergence suggest that the magnetic flux can rise buoyantly through the convecti on zone but is trapped at the photosphere, while its further rising into the atmosphere resorts to the Parker buoyancy instability. To trigger such an instability, the Lorentz force in the photosphere needs to be as large as the gas pressure gradient to hold up an extra amount of mass against gravity. This naturally results in a strongly non-force-free photosphere, which is indeed shown in typical idealized numerical simulations of flux tube buoyancy from below the photosphere into the corona. Here we conduct a statistical study of the extents of normalized Lorentz forces and torques in the emerging photospheric magnetic field with a substantially large sample of SDO/HMI vector magnetograms. We found that the photospheric field has a rather small Lorentz force and torque on average, and thus is very close to a force-free state, which is not consistent with theories as well as idealized simulations of flux emergence. Furthermore, the small extents of forces and torques seem not to be influenced by the emerging ARs size, the emergence rate, or the non-potentiality of the field. This result puts an important constraint on future development of theories and simulations of flux emergence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا