ترغب بنشر مسار تعليمي؟ اضغط هنا

Large Magneto-Electric Resistance in the Topological Dirac Semimetal alpha Sn

412   0   0.0 ( 0 )
 نشر من قبل Vijaysankar Kalappattil
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spin-momentum locking of surface states in topological quantum materials can produce a resistance that scales linearly with magnetic and electric fields. Such a bilinear magneto-electric resistance (BMER) effect offers a completely new approach for magnetic storage and magnetic field sensing applications. The effects demonstrated so far, however, are relatively weak or for low temperatures. Strong room-temperature BMER effects have now been found in topological Dirac semimetal alpha-Sn thin films. The epitaxial alpha-Sn films were grown by sputtering on silicon substrates. They showed BMER responses that are 10^6 times larger than previously reported at room temperature and also larger than that previously reported at low temperatures. These results represent a major advance toward realistic BMER applications. The data also made possible the first characterization of the three-dimensional, Fermi-level spin texture of topological surface states in alpha-Sn.



قيم البحث

اقرأ أيضاً

Three-dimensional (3D) topological Dirac semimetals (TDSs) are rare but important as a versatile platform for exploring exotic electronic properties and topological phase transitions. A quintessential feature of TDSs is 3D Dirac fermions associated w ith bulk electronic states near the Fermi level. Using angle-resolved photoemission spectroscopy (ARPES), we have observed such bulk Dirac cones in epitaxially-grown {alpha}-Sn films on InSb(111), the first such TDS system realized in an elemental form. First-principles calculations confirm that epitaxial strain is key to the formation of the TDS phase. A phase diagram is established that connects the 3D TDS phase through a singular point of a zero-gap semimetal phase to a topological insulator (TI) phase. The nature of the Dirac cone crosses over from 3D to 2D as the film thickness is reduced.
Surface states of three-dimensional topological insulators exhibit the phenomenon of spin-momentum locking, whereby the orientation of an electron spin is determined by its momentum. Probing the spin texture of these states is of critical importance for the realization of topological insulator devices, however the main technique available so far is the spin- and angle-resolved photoemission spectroscopy. Here we reveal a close link between the spin texture and a new kind of magneto-resistance, which depends on the relative orientation of the current with respect to the magnetic field as well as the crystallographic axes, and scales linearly with both the applied electric and magnetic fields. This bilinear magneto-electric resistance can be used to map the spin texture of topological surface states by simple transport measurements. For a prototypical Bi2Se3 single layer, we can map both the in-plane and the out-of-plane components of the spin texture - the latter arising from hexagonal warping. Theoretical calculations suggest that the bilinear magneto-electric resistance originates from the conversion of a non-equilibrium spin current into a charge current under the application of the external magnetic field.
139 - S. Wiedmann , A. Jost , B. Fauque 2016
We report on high-field angle-dependent magneto-transport measurements on epitaxial thin films of Bi2Se3, a three-dimensional topological insulator. At low temperature, we observe quantum oscillations that demonstrate the simultaneous presence of bul k and surface carriers. The magneto- resistance of Bi2Se3 is found to be highly anisotropic. In the presence of a parallel electric and magnetic field, we observe a strong negative longitudinal magneto-resistance that has been consid- ered as a smoking-gun for the presence of chiral fermions in a certain class of semi-metals due to the so-called axial anomaly. Its observation in a three-dimensional topological insulator implies that the axial anomaly may be in fact a far more generic phenomenon than originally thought.
83 - D. Takane , Z. Wang , S. Souma 2016
We have performed angle-resolved photoemission spectroscopy on HfSiS, which has been predicted to be a topological line-node semimetal with square Si lattice. We found a quasi-two-dimensional Fermi surface hosting bulk nodal lines, alongside the surf ace states at the Brillouin-zone corner exhibiting a sizable Rashba splitting and band-mass renormalization due to many-body interactions. Most notably, we discovered an unexpected Dirac-like dispersion extending one-dimensionally in k space - the Dirac-node arc - near the bulk node at the zone diagonal. These novel Dirac states reside on the surface and could be related to hybridizations of bulk states, but currently we have no explanation for its origin. This discovery poses an intriguing challenge to the theoretical understanding of topological line-node semimetals.
We report magneto-transport studies of topological insulator Bi_{2}Te_{3} thin films grown by pulsed laser deposition. A non-saturating linear-like magneto-resistance (MR) is observed at low temperatures in the magnetic field range from a few Tesla u p to 60 Tesla. We demonstrate that the strong linear-like MR at high field can be well understood as the weak antilocalization phenomena described by Hikami-Larkin-Nagaoka theory. Our analysis suggests that in our system, a topological insulator, the elastic scattering time can be longer than the spin-orbit scattering time. We briefly discuss our results in the context of Dirac Fermion physics and quantum linear magnetoresistance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا