ﻻ يوجد ملخص باللغة العربية
VM startup time is an essential factor in designing elastic cloud applications. For example, a cloud application with autoscaling can reduce under- and over-provisioning of VM instances with a precise estimation of VM startup time, and in turn, it is likely to guarantee the applications performance and improve the cost efficiency. However, VM startup time has been little studied, and available measurement results performed previously did not consider various configurations of VMs for modern cloud applications. In this work, we perform comprehensive measurements and analysis of VM startup time from two major cloud providers, namely Amazon Web Services (AWS) and Google Cloud Platform (GCP). With three months of measurements, we collected more than 300,000 data points from each provider by applying a set of configurations, including 11+ VM types, four different data center locations, four VM image sizes, two OS types, and two purchase models (e.g., spot/preemptible VMs vs. on-demand VMs). With extensive analysis, we found that VM startup time can vary significantly because of several important factors, such as VM image sizes, data center locations, VM types, and OS types. Moreover, by comparing with previous measurement results, we confirm that cloud providers (specifically AWS) made significant improvements for the VM startup times and currently have much quicker VM startup times than in the past.
We have developed a highly scalable application, called Shoal, for tracking and utilizing a distributed set of HTTP web caches. Squid servers advertise their existence to the Shoal server via AMQP messaging by running Shoal Agent. The Shoal server pr
Internet of Things (IoT) has already proven to be the building block for next-generation Cyber-Physical Systems (CPSs). The considerable amount of data generated by the IoT devices needs latency-sensitive processing, which is not feasible by deployin
Data intensive applications on clusters often require requests quickly be sent to the node managing the desired data. In many applications, one must look through a sorted tree structure to determine the responsible node for accessing or storing the d
We introduce an optimization algorithm for resource allocation in the LIPI Public Cluster to optimize its usage according to incoming requests from users. The tool is an extended and modified genetic algorithm developed to match specific natures of p
Complex applications running on multicore processors show a rich performance phenomenology. The growing number of cores per ccNUMA domain complicates performance analysis of memory-bound code since system noise, load imbalance, or task-based programm