ترغب بنشر مسار تعليمي؟ اضغط هنا

Axion-like particles from primordial black holes shining through the Universe

108   0   0.0 ( 0 )
 نشر من قبل Francesco Schiavone
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a cosmological scenario in which the very early Universe experienced a transient epoch of matter domination due to the formation of a large population of primordial black holes (PBHs) with masses $M lesssim 10^{9},textrm{g}$, that evaporate before Big Bang nucleosynthesis. In this context, Hawking radiation would be a non-thermal mechanism to produce a cosmic background of axion-like particles (ALPs). We assume the minimal scenario in which these ALPs couple only with photons. In the case of ultralight ALPs ($m_a lesssim 10^{-9},textrm{eV}$) the cosmic magnetic fields might trigger ALP-photon

قيم البحث

اقرأ أيضاً

We study the well-motivated mixed dark matter (DM) scenario composed of a dominant thermal WIMP, highlighting the case of $SU(2)_L$ triplet fermion winos, with a small fraction of primordial black holes (PBHs). After the wino kinetic decoupling, the DM particles are captured by PBHs leading to the presence of PBHs with dark minihalos in the Milky Way today. The strongest constraints for the wino DM come from the production of narrow line gamma rays from wino annihilation in the Galactic Center. We analyse in detail the viability of the mixed wino DM scenario, and determine the constraints on the fraction of DM in PBHs assuming a cored halo profile in the Milky Way. We show that already with the sensitivity of current indirect searches, there is a significant probability for detecting a gamma ray signal characteristic for the wino annihilation in a single nearby dressed PBH when $M_{text{PBH}} sim M_{odot}$, which we refer to as a shining black hole. Similar results should apply also in more general setups with ultracompact minihalos or other DM models, since the accretion of DM around large overdensities and DM annihilation are both quite generic processes.
It was recently pointed out that very energetic subclasses of supernovae (SNe), like hypernovae and superluminous SNe, might host ultra-strong magnetic fields in their core. Such fields may catalyze the production of feebly interacting particles, cha nging the predicted emission rates. Here we consider the case of axion-like particles (ALPs) and show that the predicted large scale magnetic fields in the core contribute significantly to the ALP production, via a coherent conversion of thermal photons. Using recent state-of-the-art SN simulations including magnetohydrodynamics, we find that if ALPs have masses $m_a sim {mathcal O}(10), rm MeV$, their emissivity via magnetic
Probing the QCD axion dark matter (DM) hypothesis is extremely challenging as the axion interacts very weakly with Standard Model particles. We propose a new avenue to test the QCD axion DM via transient radio signatures coming from encounters betwee n neutron stars (NSs) and axion minihalos around primordial black holes (PBHs). We consider a general QCD axion scenario in which the PQ symmetry breaking occurs before (or during) inflation coexisting with a small fraction of DM in the form of PBHs. The PBHs will unavoidably acquire around them axion minihalos with the typical length scale of parsecs. The axion density in the minihalos may be much higher than the local DM density, and the presence of these compact objects in the Milky Way today provides a novel chance for testing the axion DM hypothesis. We study the evolution of the minihalo mass distribution in the Galaxy accounting for tidal forces and estimate the encounter rate between NSs and the dressed PBHs. We find that the encounters give rise to transient line-like emission of radio frequency photons produced by the resonant axion-photon conversion in the NS magnetosphere and the characteristic signal could be detectable with the sensitivity of current and prospective radio telescopes.
133 - Pierre Brun 2013
The high-energy Universe is potentially a great laboratory for searching new light bosons such as axion-like particles (ALPs). Cosmic sources are indeed the scene of violent phenomena that involve strong magnetic field and/or very long baselines, whe re the effects of the mixing of photons with ALPs could lead to observable effects. Two examples are archetypal of this fact, that are the Universe opacity to gamma-rays and the imprints of astrophysical magnetic turbulence in the energy spectra of high-energy sources. In the first case, hints for the existence of ALPs can be proposed whereas the second one is used to put constraints on the ALP mass and coupling to photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا