ﻻ يوجد ملخص باللغة العربية
We consider a cosmological scenario in which the very early Universe experienced a transient epoch of matter domination due to the formation of a large population of primordial black holes (PBHs) with masses $M lesssim 10^{9},textrm{g}$, that evaporate before Big Bang nucleosynthesis. In this context, Hawking radiation would be a non-thermal mechanism to produce a cosmic background of axion-like particles (ALPs). We assume the minimal scenario in which these ALPs couple only with photons. In the case of ultralight ALPs ($m_a lesssim 10^{-9},textrm{eV}$) the cosmic magnetic fields might trigger ALP-photon
We study the well-motivated mixed dark matter (DM) scenario composed of a dominant thermal WIMP, highlighting the case of $SU(2)_L$ triplet fermion winos, with a small fraction of primordial black holes (PBHs). After the wino kinetic decoupling, the
It was recently pointed out that very energetic subclasses of supernovae (SNe), like hypernovae and superluminous SNe, might host ultra-strong magnetic fields in their core. Such fields may catalyze the production of feebly interacting particles, cha
The physics case for axions and axion-like particles is reviewed and an overview of ongoing and near-future laboratory searches is presented.
Probing the QCD axion dark matter (DM) hypothesis is extremely challenging as the axion interacts very weakly with Standard Model particles. We propose a new avenue to test the QCD axion DM via transient radio signatures coming from encounters betwee
The high-energy Universe is potentially a great laboratory for searching new light bosons such as axion-like particles (ALPs). Cosmic sources are indeed the scene of violent phenomena that involve strong magnetic field and/or very long baselines, whe