ﻻ يوجد ملخص باللغة العربية
We present results on the measured shapes of 832 galaxies in 11 galaxy clusters at 1.0 < z <1.4 from the GOGREEN survey. We measure the axis ratio ($q$), the ratio of the minor to the major axis, of the cluster galaxies from near-infrared Hubble Space Telescope imaging using Sersic profile fitting and compare them with a field sample. We find that the median $q$ of both star-forming and quiescent galaxies in clusters increases with stellar mass, similar to the field. Comparing the axis ratio distributions between clusters and the field in four mass bins, the distributions for star-forming galaxies in clusters are consistent with those in the field. Conversely, the distributions for quiescent galaxies in the two environments are distinct, most remarkably in $10.1leqlog(M/{rm M}_{odot})<10.5$ where clusters show a flatter distribution, with an excess at low $q$. Modelling the distribution with oblate and triaxial components, we find that the cluster and field sample difference is consistent with an excess of flattened oblate quiescent galaxies in clusters. The oblate population contribution drops at high masses, resulting in a narrower $q$ distribution in the massive population than at lower masses. Using a simple accretion model, we show that the observed $q$ distributions and quenched fractions are consistent with a scenario where no morphological transformation occurs for the environmentally quenched population in the two intermediate mass bins. Our results suggest that environmental quenching mechanism(s) likely produce a population that has a different morphological mix than those resulting from the dominant quenching mechanism in the field.
We study the stellar mass functions (SMFs) of star-forming and quiescent galaxies in 11 galaxy clusters at 1.0<z<1.4, drawn from the Gemini Observations of Galaxies in Rich Early Environments (GOGREEN) survey. Based on more than 500 hours of Gemini/G
We aim to determine the mass, velocity anisotropy, and pseudo phase-space density profiles (M(r), beta(r), and Q(r), respectively) of clusters of galaxies at the highest redshifts investigated in detail so far. We combine the GOGREEN and GCLASS spect
We present results on the environmental dependence of the star-forming galaxy main sequence in 11 galaxy cluster fields at $1.0 < z < 1.5$ from the Gemini Observations of Galaxies in Rich Early Environments Survey (GOGREEN) survey. We use a homogeneo
We present a Bayesian full-spectral-fitting analysis of 75 massive ($M_* > 10^{10.3} M_odot$) UVJ-selected galaxies at redshifts of $1.0 < z < 1.3$, combining extremely deep rest-frame ultraviolet spectroscopy from VANDELS with multi-wavelength photo
We have studied the evolution of high redshift quiescent galaxies over an effective area of ~1.7 deg^2 in the COSMOS field. Galaxies have been divided according to their star-formation activity and the evolution of the different populations has been