ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting the diversity of early epidemic spread on networks

70   0   0.0 ( 0 )
 نشر من قبل Andrea Allen
 تاريخ النشر 2021
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The course of an epidemic exhibits average growth dynamics determined by features of the pathogen and the population, yet also features significant variability reflecting the stochastic nature of disease spread. The interplay of biological, social, structural and random factors makes disease forecasting extraordinarily complex. In this work, we reframe a stochastic branching process analysis in terms of probability generating functions and compare it to continuous time epidemic simulations on networks. In doing so, we predict the diversity of emerging epidemic courses on both homogeneous and heterogeneous networks. We show how the challenge of inferring the early course of an epidemic falls on the randomness of disease spread more so than on the heterogeneity of contact patterns. We provide an analysis which helps quantify, in real time, the probability that an epidemic goes supercritical or conversely, dies stochastically. These probabilities are often assumed to be one and zero, respectively, if the basic reproduction number, or R0, is greater than 1, ignoring the heterogeneity and randomness inherent to disease spread. This framework can give more insight into early epidemic spread by weighting standard deterministic models with likelihood to inform pandemic preparedness with probabilistic forecasts.



قيم البحث

اقرأ أيضاً

66 - Yi Zhang 2020
In December 2019, COVID-19 were detected in Wuhan City, Hubei Province of China. SARS-CoV-2 rapidly spread to the whole Chinese mainland with the people during the Chinese Spring Festival Travel Rush. As of 19 February 2020, 74576 confirmed cases of COVID-19 had been reported in Chinese Mainland. What kind of cities have more confirmed cases, and is there any relationship between GDP and confirmed cases? In this study, we explored the relationship between the confirmed cases of COVID-19 and GDP at the prefectural-level, found a positive correlation between them. This finding warns high GDP areas should pay more prevention and control efforts when an epidemic outbreak, as they have greater risks than other areas nearby.
The resurgence of measles is largely attributed to the decline in vaccine adoption and the increase in mobility. Although the vaccine for measles is readily available and highly successful, its current adoption is not adequate to prevent epidemics. V accine adoption is directly affected by individual vaccination decisions, and has a complex interplay with the spatial spread of disease shaped by an underlying mobility (travelling) network. In this paper, we model the travelling connectivity as a scale-free network, and investigate dependencies between the networks assortativity and the resultant epidemic and vaccination dynamics. In doing so we extend an SIR-network model with game-theoretic components, capturing the imitation dynamics under a voluntary vaccination scheme. Our results show a correlation between the epidemic dynamics and the networks assortativity, highlighting that networks with high assortativity tend to suppress epidemics under certain conditions. In highly assortative networks, the suppression is sustained producing an early convergence to equilibrium. In highly disassortative networks, however, the suppression effect diminishes over time due to scattering of non-vaccinating nodes, and frequent switching between the predominantly vaccinating and non-vaccinating phases of the dynamics.
191 - Nilmani Mathur , Gargi Shaw 2020
We propose a mathematical model to analyze the time evolution of the total number of infected population with Covid-19 disease at a region in the ongoing pandemic. Using the available data of Covid-19 infected population on various countries we formu late a model which can successfully track the time evolution from early days to the saturation period in a given wave of this infectious disease. It involves a set of effective parameters which can be extracted from the available data. Using those parameters the future trajectories of the disease spread can also be projected. A set of differential equations is also proposed whose solutions are these time evolution trajectories. Using such a formalism we project the future time evolution trajectories of infection spread for a number of countries where the Covid-19 infection is still rapidly rising.
In late-2020, many countries around the world faced another surge in number of confirmed cases of COVID-19, including United Kingdom, Canada, Brazil, United States, etc., which resulted in a large nationwide and even worldwide wave. While there have been indications that precaution fatigue could be a key factor, no scientific evidence has been provided so far. We used a stochastic metapopulation model with a hierarchical structure and fitted the model to the positive cases in the US from the start of outbreak to the end of 2020. We incorporated non-pharmaceutical interventions (NPIs) into this model by assuming that the precaution strength grows with positive cases and studied two types of pandemic fatigue. We found that people in most states and in the whole US respond to the outbreak in a sublinear manner (with exponent k=0.5), while only three states (Massachusetts, New York and New Jersey) have linear reaction (k=1). Case fatigue (decline in peoples vigilance to positive cases) is responsible for 58% of cases, while precaution fatigue (decay of maximal fraction of vigilant group) accounts for 26% cases. If there were no pandemic fatigue (no case fatigue and no precaution fatigue), total positive cases would have reduced by 68% on average. Our study shows that pandemic fatigue is the major cause of the worsening situation of COVID-19 in United States. Reduced vigilance is responsible for most positive cases, and higher mortality rate tends to push local people to react to the outbreak faster and maintain vigilant for longer time.
276 - Ruiqi Li , Wenxu Wang , Zengru Di 2016
Understanding and predicting outbreaks of contagious diseases are crucial to the development of society and public health, especially for underdeveloped countries. However, challenging problems are encountered because of complex epidemic spreading dy namics influenced by spatial structure and human dynamics (including both human mobility and human interaction intensity). We propose a systematical model to depict nationwide epidemic spreading in C^{o}te dIvoire, which integrates multiple factors, such as human mobility, human interaction intensity, and demographic features. We provide insights to aid in modeling and predicting the epidemic spreading process by data-driven simulation and theoretical analysis, which is otherwise beyond the scope of local evaluation and geometrical views. We show that the requirement that the average local basic reproductive number to be greater than unity is not necessary for outbreaks of epidemics. The observed spreading phenomenon can be roughly explained as a heterogeneous diffusion-reaction process by redefining mobility distance according to the human mobility volume between nodes, which is beyond the geometrical viewpoint. However, the heterogeneity of human dynamics still poses challenges to precise prediction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا