ﻻ يوجد ملخص باللغة العربية
An exact low-dimensional system of mean-field equations for an infinite-size network of pulse coupled integrate-and-fire neurons with a bimodal distribution of an excitability parameter is derived. Bifurcation analysis of these equations shows a rich variety of dynamic modes that do not exist with a unimodal distribution of this parameter. New modes include multistable equilibrium states with different levels of the spiking rate, collective oscillations and chaos. All oscillatory modes coexist with stable equilibrium states. The mean field equations are a good approximation to the solutions of a microscopic model consisting of several thousand neurons.
We analyze the dynamics of two coupled identical populations of quadratic integrate-and-fire neurons, which represent the canonical model for class I neurons near the spiking threshold. The populations are heterogeneous; they include both inherently
We derive analytical formulae for the firing rate of integrate-and-fire neurons endowed with realistic synaptic dynamics. In particular we include the possibility of multiple synaptic inputs as well as the effect of an absolute refractory period into the description.
Collective oscillations and their suppression by external stimulation are analyzed in a large-scale neural network consisting of two interacting populations of excitatory and inhibitory quadratic integrate-and-fire neurons. In the limit of an infinit
Complementary metal oxide semiconductor (CMOS) devices display volatile characteristics, and are not well suited for analog applications such as neuromorphic computing. Spintronic devices, on the other hand, exhibit both non-volatile and analog featu
Conventional sampling focuses on encoding and decoding bandlimited signals by recording signal amplitudes at known time points. Alternately, sampling can be approached using biologically-inspired schemes. Among these are integrate-and-fire time encoding machines (IF-TEMs). They behave like simplifi