ﻻ يوجد ملخص باللغة العربية
Blind image super-resolution (SR), aiming to super-resolve low-resolution images with unknown degradation, has attracted increasing attention due to its significance in promoting real-world applications. Many novel and effective solutions have been proposed recently, especially with the powerful deep learning techniques. Despite years of efforts, it still remains as a challenging research problem. This paper serves as a systematic review on recent progress in blind image SR, and proposes a taxonomy to categorize existing methods into three different classes according to their ways of degradation modelling and the data used for solving the SR model. This taxonomy helps summarize and distinguish among existing methods. We hope to provide insights into current research states, as well as to reveal novel research directions worth exploring. In addition, we make a summary on commonly used datasets and previous competitions related to blind image SR. Last but not least, a comparison among different methods is provided with detailed analysis on their merits and demerits using both synthetic and real testing images.
Image super-resolution (SR) research has witnessed impressive progress thanks to the advance of convolutional neural networks (CNNs) in recent years. However, most existing SR methods are non-blind and assume that degradation has a single fixed and k
Existing blind image super-resolution (SR) methods mostly assume blur kernels are spatially invariant across the whole image. However, such an assumption is rarely applicable for real images whose blur kernels are usually spatially variant due to fac
Most conventional supervised super-resolution (SR) algorithms assume that low-resolution (LR) data is obtained by downscaling high-resolution (HR) data with a fixed known kernel, but such an assumption often does not hold in real scenarios. Some rece
Single-image super-resolution (SR) and multi-frame SR are two ways to super resolve low-resolution images. Single-Image SR generally handles each image independently, but ignores the temporal information implied in continuing frames. Multi-frame SR i
Most existing CNN-based super-resolution (SR) methods are developed based on an assumption that the degradation is fixed and known (e.g., bicubic downsampling). However, these methods suffer a severe performance drop when the real degradation is diff