ﻻ يوجد ملخص باللغة العربية
We report on the growth of single-crystal potassium birnessite (K0.31MnO2*0.41H2O) and present both the average and local structural characterization of this frustrated magnetic system. Single crystals were obtained employing a flux growth method with a KNO3/B2O3 flux at 700 {deg}C. Single-crystal X-ray diffraction revealed an average orthorhombic symmetry, with space group Cmcm. A combination of high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with atomic resolution energy dispersive X-ray spectroscopy (EDS) demonstrated the layered structure of potassium birnessite with manganese-containing planes well separated by layers of potassium atoms. MnO6 octahedra and the K/H2O planes were clearly imaged via integrated differential phase contrast (iDPC) STEM. Furthermore, iDPC-STEM also revealed the existence of local domains with alternating contrast of the manganese oxide planes, most likely originating from charge ordering of Mn3+ and Mn4+ along the c-axis. These charge-ordered domains are clearly correlated with a reduction in the c-lattice parameter compared to the rest of the matrix. The insight gained from this work allows for a better understanding of the correlation between structure and magnetic properties.
We present thermodynamic, structural and transport measurements on Ba(Fe0.973Cr0.027)2As2 single crystals. All measurements reveal sharp anomalies at ~ 112 K. Single crystal x-ray diffraction identifies the structural transition as a first order, fro
We study the effects of bismuth doping on the crystal structure and phase transitions in single crystals of the perovskite semiconductor methylammonium lead tribromide, MAPbBr3. By measuring temperature-dependent specific heat capacity (Cp) we find t
Using first-principles density functional theory calculations, we investigate a family of stable two-dimensional crystals with chemical formula $A_2B_2$, where $A$ and $B$ belong to groups IV and V, respectively ($A$ = C, Si, Ge, Sn, Pb; $B$ = N, P,
The paper describes heterostructures spontaneously formed in PMN-PT single crystals cooled under bias electric field applied along [001]pc and then zero-field-heated in the vicinity of the so-called depoling temperature. In particular, formation of l
The metallic character of the GeBi2Te4 single crystals is probed using a combination of structural and physical properties measurements, together with density functional theory (DFT) calculations. The structural study shows distorted Ge coordination