ترغب بنشر مسار تعليمي؟ اضغط هنا

Activation of magnetic moments in CVD-grown graphene by annealing

163   0   0.0 ( 0 )
 نشر من قبل Joshua Folk
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Effects of annealing on chemical vapor deposited graphene are investigated via a weak localization magnetoresistance measurement. Annealing at SI{300}{celsius} in inert gases, a common cleaning procedure for graphene devices, is found to raise the dephasing rate significantly above the rate from electron-electron interactions, which would otherwise be expected to dominate dephasing at 4 K and below. This extra dephasing is apparently induced by local magnetic moments activated by the annealing process, and depends strongly on the backgate voltage applied.

قيم البحث

اقرأ أيضاً

146 - M. Schmitz , T. Ouaj , Z. Winter 2020
We show the emergence of fractional quantum Hall states in dry-transferred chemical vapor deposition (CVD) derived graphene assembled into heterostructures for magnetic fields from below 3 T to 35 T. Effective composite-fermion filling factors up to $ u^* = 4$ are visible and higher order composite-fermion states (with four flux quanta attached) start to emerge at the highest fields. Our results show that the quantum mobility of CVD-grown graphene is comparable to that of exfoliated graphene and, more specifically, that the $p/3$ fractional quantum Hall states have energy gaps of up to 30 K, well comparable to those observed in other silicon-gated devices based on exfoliated graphene.
The non-covalent functionalisation of graphene is an attractive strategy to alter the surface chemistry of graphene without damaging its superior electrical and mechanical properties. Using the facile method of aqueous-phase functionalisation on larg e-scale CVD-grown graphene, we investigated the formation of different packing densities in self-assembled monolayers (SAMs) of perylene bisimide derivatives and related this to the amount of substrate contamination. We were able to directly observe wet-chemically deposited SAMs in scanning tunnelling microscopy (STM) on transferred CVD graphene and revealed that the densely packed perylene ad-layers adsorb with the conjugated {pi}-system of the core perpendicular to the graphene substrate. This elucidation of the non-covalent functionalisation of graphene has major implications on controlling its surface chemistry and opens new pathways for adaptable functionalisation in ambient conditions and on the large scale.
We present results of non-local and three terminal (3T) spin precession measurements on spin injection devices fabricated on epitaxial graphene on SiC. The measurements were performed before and after an annealing step at 150 degrees Celsius for 15 m inutes in vacuum. The values of spin relaxation length L_s and spin relaxation time tau_s obtained after annealing are reduced by a factor 2 and 4, respectively, compared to those before annealing. An apparent discrepancy between spin diffusion constant D_s and charge diffusion constant D_c can be resolved by investigating the temperature dependence of the g-factor, which is consistent with a model for paramagnetic magnetic moments.
The results of magneto-optical spectroscopy investigations of excitons in a CVD grown monolayer of WSe2 encapsulated in hexagonal boron nitride are presented. The emission linewidth for the 1s state is of 4:7 meV, close to the narrowest emissions obs erved in monolayers exfoliated from bulk material. The 2s excitonic state is also observed at higher energies in the photoluminescence spectrum. Magneto-optical spectroscopy allows for the determination of the g-factors and of the spatial extent of the excitonic wave functions associated with these emissions. Our work establishes CVD grown monolayers of transition metal dichalcogenides as a mature technology for optoelectronic applications.
We study photoluminescence (PL) spectra and exciton dynamics of MoS$_2$ monolayer (ML) grown by the chemical vapor deposition technique. In addition to the usual direct A-exciton line we observe a low-energy line of bound excitons dominating the PL s pectra at low temperatures. This line shows unusually strong redshift with increase in the temperature and submicrosecond time dynamics suggesting indirect nature of the corresponding transition. By monitoring temporal dynamics of exciton PL distribution in the ML plane we observe diffusive transport of A-excitons and measure the diffusion coefficient up to $40$~cm$^2$/s at elevated excitation powers. The bound exciton spatial distribution spreads over tens of microns in $sim 1$ $mu$s. However this spread is subdiffusive, characterized by a significant slowing down with time. The experimental findings are interpreted as a result of the interplay between the diffusion and Auger recombination of excitons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا