ترغب بنشر مسار تعليمي؟ اضغط هنا

The Spin and Orientation of the Black Hole in XTE J1908$+$094

91   0   0.0 ( 0 )
 نشر من قبل Paul Draghis
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NuSTAR observed the black hole candidate XTE J1908$+$094 during its 2013 and 2019 outbursts. We use relativistic reflection to measure the spin of the black hole through 19 different assumptions of relxill flavors and parameter combinations. The most favored model in terms of Deviance Information Criterion (DIC) measures the spin of the black hole to be $a = 0.55^{+0.29}_{-0.45}$, and an inclination of $theta=27^{+2}_{-3}$ degrees ($1sigma$ statistical errors). We look at the effects of coronal geometry assumptions and density of the accretion disk on the spin prediction. All 19 tested models provide consistent spin estimates. We discuss the evolution of spin measurement techniques using relativistic reflection in X-ray binaries and discuss the implications of this spin measurement in reconciling the distributions of stellar mass black hole spin measurements made through X-ray and gravitational wave observations.



قيم البحث

اقرأ أيضاً

Black hole X-ray binaries undergo occasional outbursts caused by changing inner accretion flows. Here we report high-angular resolution radio observations of the 2013 outburst of the black hole candidate X-ray binary system J1908+094, using data from the VLBA and EVN. We show that following a hard-to-soft state transition, we detect moving jet knots that appear asymmetric in morphology and brightness, and expand to become laterally resolved as they move away from the core, along an axis aligned approximately $-11$degree east of north. We initially see only the southern component, whose evolution gives rise to a 15-mJy radio flare and generates the observed radio polarization. This fades and becomes resolved out after 4 days, after which a second component appears to the north, moving in the opposite direction. From the timing of the appearance of the knots relative to the X-ray state transition, a 90degree swing of the inferred magnetic field orientation, the asymmetric appearance of the knots, their complex and evolving morphology, and their low speeds, we interpret the knots as working surfaces where the jets impact the surrounding medium. This would imply a substantially denser environment surrounding XTE J1908+094 than has been inferred to exist around the microquasar sources GRS 1915+105 and GRO J1655-40.
109 - J.J.M. in t Zand 2002
XTE J1908+094 is an X-ray transient that went into outburst in February 2002. After two months it reached a 2-250 keV peak flux of 1 to 2 X 10-8 erg/s/cm2. Circumstantial evidence points to an accreting galactic black hole as the origin of the the X- radiation: pulsations nor thermonuclear flashes were detected that would identify a neutron star and the spectrum was unusually hard for a neutron star at the outburst onset. We report on BeppoSAX and RXTE All Sky Monitor observations of the broad-band spectrum of XTE J1908+094. The spectrum is consistent with a model consisting of a Comptonization component by a ~40 keV plasma (between 2 and 60 keV this component can be approximated by a power law with a photon index of 1.9 to 2.1), a multicolor accretion disk blackbody component with a temperature just below 1 keV and a broad emission line at about 6 keV. The spectrum is heavily absorbed by cold interstellar matter with an equivalent hydrogen column density of 2.5 X 10+22 cm-2, which makes it difficult to study the black body component in detail. The black body component exhibits strong evolution about 6 weeks into the outburst. Two weeks later this is followed by a swift decay of the power law component. The broadness of the 6 keV feature may be due to relativistic broadening or Compton scattering of a narrow Fe-K line.
We present the long term X-ray light curves, detailed spectral and timing analyses of XTE J1908+094 using the Rossi X-ray Timing Explorer Proportional Counter Array observations covering two outbursts in 2002 and early 2003. At the onset of the first outburst, the source was found in a spectrally low/hard state lasting for ~40 days, followed by a three day long transition to the high/soft state. The source flux (in 2$-$10 keV) reached $sim$100 mCrab on 2002 April 6, then decayed rapidly. In power spectra, we detect strong band-limited noise and varying low-frequency quasi periodic oscillations that evolved from ~0.5 Hz to ~5 Hz during the initial low/hard state of the source. We find that the second outburst closely resembled the spectral evolution of the first. The X-ray transients overall outburst characteristics lead us to classify XTE J1908+094 as a black-hole candidate. Here we also derive precise X-ray position of the source using Chandra observations which were performed during the decay phase of the first outburst and following the second outburst.
XTE J1908+094 is an X-ray transient black hole candidate in the Galactic plane that was observed in outburst in 2002 and 2013. Here we present multi-frequency radio and X-ray data, including radio polarimetry, spanning the entire period of the 2013 o utburst. We find that the X-ray behaviour of XTE J1908+094 traces the standard black hole hardness-intensity path, evolving from a hard state, through a soft state, before returning to a hard state and quiescence. Its radio behaviour is typical of a compact jet that becomes quenched before discrete ejecta are launched during the late stages of X-ray softening. The radio and X-ray fluxes, as well as the light curve morphologies, are consistent with those observed during the 2002 outburst of this source. The polarisation angle during the rise of the outburst infers a jet orientation in agreement with resolved observations but also displays a gradual drift, which we associate with observed changes in the structure of the discrete ejecta. We also observe an unexpected 90deg rotation of the polarisation angle associated with a second component.
136 - M. Dotti , M. Colpi , S. Pallini 2012
Massive black holes in galactic nuclei vary their mass M and spin vector J due to accretion. In this study we relax, for the first time, the assumption that accretion can be either chaotic, i.e. when the accretion episodes are randomly and isotropica lly oriented, or coherent, i.e. when they occur all in a preferred plane. Instead, we consider different degrees of anisotropy in the fueling, never confining to accretion events on a fixed direction. We follow the black hole growth evolving contemporarily mass, spin modulus a and spin direction. We discover the occurrence of two regimes. An early phase (M <~ 10 million solar masses) in which rapid alignment of the black hole spin direction to the disk angular momentum in each single episode leads to erratic changes in the black hole spin orientation and at the same time to large spins (a ~ 0.8). A second phase starts when the black hole mass increases above >~ 10 million solar masses and the accretion disks carry less mass and angular momentum relatively to the hole. In the absence of a preferential direction the black holes tend to spin-down in this phase. However, when a modest degree of anisotropy in the fueling process (still far from being coherent) is present, the black hole spin can increase up to a ~ 1 for very massive black holes (M >~ 100 million solar masses), and its direction is stable over the many accretion cycles. We discuss the implications that our results have in the realm of the observations of black hole spin and jet orientations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا