ﻻ يوجد ملخص باللغة العربية
In this work, we present a web-based annotation and querying tool Sangrahaka. It annotates entities and relationships from text corpora and constructs a knowledge graph (KG). The KG is queried using templatized natural language queries. The application is language and corpus agnostic, but can be tuned for special needs of a specific language or a corpus. A customized version of the framework has been used in two annotation tasks. The application is available for download and installation. Besides having a user-friendly interface, it is fast, supports customization, and is fault tolerant on both client and server side. The code is available at https://github.com/hrishikeshrt/sangrahaka and the presentation with a demo is available at https://youtu.be/nw9GFLVZMMo.
Mutation testing can be used to assess the fault-detection capabilities of a given test suite. To this aim, two characteristics of mutation testing frameworks are of paramount importance: (i) they should generate mutants that are representative of re
The RDF graph-based data model has seen ever-broadening adoption in recent years, prompting the standardization of the SPARQL query language for RDF, and the development of local and distributed engines for processing SPARQL queries. This survey pape
In this work, we present a Web-based annotation tool `Relation Triplets Extractor footnote{https://abera87.github.io/annotate/} (RTE) for annotating relation triplets from the text. Relation extraction is an important task for extracting structured i
Knowledge Graphs (KGs) have emerged as the de-facto standard for modeling and querying datasets with a graph-like structure in the Semantic Web domain. Our focus is on the performance challenges associated with querying KGs. We developed three inform
Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many