ترغب بنشر مسار تعليمي؟ اضغط هنا

Neighbor-Vote: Improving Monocular 3D Object Detection through Neighbor Distance Voting

93   0   0.0 ( 0 )
 نشر من قبل Jiajun Deng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As cameras are increasingly deployed in new application domains such as autonomous driving, performing 3D object detection on monocular images becomes an important task for visual scene understanding. Recent advances on monocular 3D object detection mainly rely on the ``pseudo-LiDAR generation, which performs monocular depth estimation and lifts the 2D pixels to pseudo 3D points. However, depth estimation from monocular images, due to its poor accuracy, leads to inevitable position shift of pseudo-LiDAR points within the object. Therefore, the predicted bounding boxes may suffer from inaccurate location and deformed shape. In this paper, we present a novel neighbor-voting method that incorporates neighbor predictions to ameliorate object detection from severely deformed pseudo-LiDAR point clouds. Specifically, each feature point around the object forms their own predictions, and then the ``consensus is achieved through voting. In this way, we can effectively combine the neighbors predictions with local prediction and achieve more accurate 3D detection. To further enlarge the difference between the foreground region of interest (ROI) pseudo-LiDAR points and the background points, we also encode the ROI prediction scores of 2D foreground pixels into the corresponding pseudo-LiDAR points. We conduct extensive experiments on the KITTI benchmark to validate the merits of our proposed method. Our results on the birds eye view detection outperform the state-of-the-art performance by a large margin, especially for the ``hard level detection.



قيم البحث

اقرأ أيضاً

141 - Xuepeng Shi , Qi Ye , Xiaozhi Chen 2021
Monocular 3D object detection is of great significance for autonomous driving but remains challenging. The core challenge is to predict the distance of objects in the absence of explicit depth information. Unlike regressing the distance as a single v ariable in most existing methods, we propose a novel geometry-based distance decomposition to recover the distance by its factors. The decomposition factors the distance of objects into the most representative and stable variables, i.e. the physical height and the projected visual height in the image plane. Moreover, the decomposition maintains the self-consistency between the two heights, leading to robust distance prediction when both predicted heights are inaccurate. The decomposition also enables us to trace the causes of the distance uncertainty for different scenarios. Such decomposition makes the distance prediction interpretable, accurate, and robust. Our method directly predicts 3D bounding boxes from RGB images with a compact architecture, making the training and inference simple and efficient. The experimental results show that our method achieves the state-of-the-art performance on the monocular 3D Object Detection and Birds Eye View tasks of the KITTI dataset, and can generalize to images with different camera intrinsics.
Data augmentation has been widely adopted for object detection in 3D point clouds. However, all previous related efforts have focused on manually designing specific data augmentation methods for individual architectures. In this work, we present the first attempt to automate the design of data augmentation policies for 3D object detection. We introduce the Progressive Population Based Augmentation (PPBA) algorithm, which learns to optimize augmentation strategies by narrowing down the search space and adopting the best parameters discovered in previous iterations. On the KITTI 3D detection test set, PPBA improves the StarNet detector by substantial margins on the moderate difficulty category of cars, pedestrians, and cyclists, outperforming all current state-of-the-art single-stage detection models. Additional experiments on the Waymo Open Dataset indicate that PPBA continues to effectively improve the StarNet and PointPillars detectors on a 20x larger dataset compared to KITTI. The magnitude of the improvements may be comparable to advances in 3D perception architectures and the gains come without an incurred cost at inference time. In subsequent experiments, we find that PPBA may be up to 10x more data efficient than baseline 3D detection models without augmentation, highlighting that 3D detection models may achieve competitive accuracy with far fewer labeled examples.
Current geometry-based monocular 3D object detection models can efficiently detect objects by leveraging perspective geometry, but their performance is limited due to the absence of accurate depth information. Though this issue can be alleviated in a depth-based model where a depth estimation module is plugged to predict depth information before 3D box reasoning, the introduction of such module dramatically reduces the detection speed. Instead of training a costly depth estimator, we propose a rendering module to augment the training data by synthesizing images with virtual-depths. The rendering module takes as input the RGB image and its corresponding sparse depth image, outputs a variety of photo-realistic synthetic images, from which the detection model can learn more discriminative features to adapt to the depth changes of the objects. Besides, we introduce an auxiliary module to improve the detection model by jointly optimizing it through a depth estimation task. Both modules are working in the training time and no extra computation will be introduced to the detection model. Experiments show that by working with our proposed modules, a geometry-based model can represent the leading accuracy on the KITTI 3D detection benchmark.
114 - Liang Peng , Fei Liu , Zhengxu Yu 2021
Monocular 3D detection currently struggles with extremely lower detection rates compared to LiDAR-based methods. The poor accuracy is mainly caused by the absence of accurate location cues due to the ill-posed nature of monocular imagery. LiDAR point clouds, which provide precise spatial measurement, can offer beneficial information for the training of monocular methods. To make use of LiDAR point clouds, prior works project them to form depth map labels, subsequently training a dense depth estimator to extract explicit location features. This indirect and complicated way introduces intermediate products, i.e., depth map predictions, taking much computation costs as well as leading to suboptimal performances. In this paper, we propose LPCG (LiDAR point cloud guided monocular 3D object detection), which is a general framework for guiding the training of monocular 3D detectors with LiDAR point clouds. Specifically, we use LiDAR point clouds to generate pseudo labels, allowing monocular 3D detectors to benefit from easy-collected massive unlabeled data. LPCG works well under both supervised and unsupervised setups. Thanks to a general design, LPCG can be plugged into any monocular 3D detector, significantly boosting the performance. As a result, we take the first place on KITTI monocular 3D/BEV (birds-eye-view) detection benchmark with a considerable margin. The code will be made publicly available soon.
117 - Li Wang , Li Zhang , Yi Zhu 2021
Recognizing and localizing objects in the 3D space is a crucial ability for an AI agent to perceive its surrounding environment. While significant progress has been achieved with expensive LiDAR point clouds, it poses a great challenge for 3D object detection given only a monocular image. While there exist different alternatives for tackling this problem, it is found that they are either equipped with heavy networks to fuse RGB and depth information or empirically ineffective to process millions of pseudo-LiDAR points. With in-depth examination, we realize that these limitations are rooted in inaccurate object localization. In this paper, we propose a novel and lightweight approach, dubbed {em Progressive Coordinate Transforms} (PCT) to facilitate learning coordinate representations. Specifically, a localization boosting mechanism with confidence-aware loss is introduced to progressively refine the localization prediction. In addition, semantic image representation is also exploited to compensate for the usage of patch proposals. Despite being lightweight and simple, our strategy leads to superior improvements on the KITTI and Waymo Open Dataset monocular 3D detection benchmarks. At the same time, our proposed PCT shows great generalization to most coordinate-based 3D detection frameworks. The code is available at: https://github.com/amazon-research/progressive-coordinate-transforms .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا