ﻻ يوجد ملخص باللغة العربية
The existence and stability of non-Abelian half-quantum vortices (HQVs) are established in ${}^{3}P_{2}$ superfluids in neutron stars with strong magnetic fields, the largest topological quantum matter in our Universe. Using a self-consistent microscopic framework, we find that one integer vortex is energetically destabilized into a pair of two non-Abelian HQVs due to the strong spin-orbit coupled gap functions. We find a topologically protected Majorana fermion on each HQV, thereby providing two-fold non-Abelian anyons characterized by both Majorana fermions and a non-Abelian first homotopy group.
We clarify topology of $^3P_2$ superfluids which are expected to be realized in the inner cores of neutron stars and cubic odd-parity superconductors. $^3P_2$ phases include uniaxial/biaxial nematic phases and nonunitary ferromagnetic and cyclic phas
It has been widely believed that half quantum vortices are indispensable to realize topological stable Majorana zero modes and non-Abelian anyons in spinful superconductors/superfluids. Contrary to this wisdom, we here demonstrate that integer quantu
Two-component fermionic superfluids on a lattice with an external non-Abelian gauge field give access to a variety of topological phases in presence of a sufficiently large spin imbalance. We address here the important issue of superfluidity breakdow
We report theoretical results for the stability of half-quantum vortices (HQVs) in the superfluid phases of $^3$He confined in highly anisotropic Nafen aerogel. Superfluidity of $^3$He confined in Nafen is the realization of a nematic superfluid with
We report on fundamental properties of superfluids with d-wave pairing symmetry. We consider neutral atomic Fermi gases in a harmonic trap, the pairing being produced by a Feshbach resonance via a d-wave interaction channel. A Ginzburg-Landau (GL) fu