ترغب بنشر مسار تعليمي؟ اضغط هنا

Probabilistic Graph Reasoning for Natural Proof Generation

54   0   0.0 ( 0 )
 نشر من قبل Changzhi Sun
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we investigate the problem of reasoning over natural language statements. Prior neural based approaches do not explicitly consider the inter-dependency among answers and their proofs. In this paper, we propose PRobr, a novel approach for joint answer prediction and proof generation. PRobr defines a joint probabilistic distribution over all possible proof graphs and answers via an induced graphical model. We then optimize the model using variational approximation on top of neural textual representation. Experiments on multiple datasets under diverse settings (fully supervised, few-shot and zero-shot evaluation) verify the effectiveness of PRobr, e.g., achieving 10%-30% improvement on QA accuracy in few/zero-shot evaluation. Our codes and models can be found at https://github.com/changzhisun/PRobr/.

قيم البحث

اقرأ أيضاً

Long text generation is an important but challenging task.The main problem lies in learning sentence-level semantic dependencies which traditional generative models often suffer from. To address this problem, we propose a Multi-hop Reasoning Generati on (MRG) approach that incorporates multi-hop reasoning over a knowledge graph to learn semantic dependencies among sentences. MRG consists of twoparts, a graph-based multi-hop reasoning module and a path-aware sentence realization module. The reasoning module is responsible for searching skeleton paths from a knowledge graph to imitate the imagination process in the human writing for semantic transfer. Based on the inferred paths, the sentence realization module then generates a complete sentence. Unlike previous black-box models, MRG explicitly infers the skeleton path, which provides explanatory views tounderstand how the proposed model works. We conduct experiments on three representative tasks, including story generation, review generation, and product description generation. Automatic and manual evaluation show that our proposed method can generate more informative and coherentlong text than strong baselines, such as pre-trained models(e.g. GPT-2) and knowledge-enhanced models.
Knowledge Graph (KG) alignment is to discover the mappings (i.e., equivalent entities, relations, and others) between two KGs. The existing methods can be divided into the embedding-based models, and the conventional reasoning and lexical matching ba sed systems. The former compute the similarity of entities via their cross-KG embeddings, but they usually rely on an ideal supervised learning setting for good performance and lack appropriate reasoning to avoid logically wrong mappings; while the latter address the reasoning issue but are poor at utilizing the KG graph structures and the entity contexts. In this study, we aim at combining the above two solutions and thus propose an iterative framework named PRASE which is based on probabilistic reasoning and semantic embedding. It learns the KG embeddings via entity mappings from a probabilistic reasoning system named PARIS, and feeds the resultant entity mappings and embeddings back into PARIS for augmentation. The PRASE framework is compatible with different embedding-based models, and our experiments on multiple datasets have demonstrated its state-of-the-art performance.
Knowledge Graph (KG) alignment aims at finding equivalent entities and relations (i.e., mappings) between two KGs. The existing approaches utilize either reasoning-based or semantic embedding-based techniques, but few studies explore their combinatio n. In this demonstration, we present PRASEMap, an unsupervised KG alignment system that iteratively computes the Mappings with both Probabilistic Reasoning (PR) And Semantic Embedding (SE) techniques. PRASEMap can support various embedding-based KG alignment approaches as the SE module, and enables easy human computer interaction that additionally provides an option for users to feed the mapping annotations back to the system for better results. The demonstration showcases these features via a stand-alone Web application with user friendly interfaces. The demo is available at https://prasemap.qizhy.com.
119 - Haozhe Ji , Pei Ke , Shaohan Huang 2020
Despite the success of generative pre-trained language models on a series of text generation tasks, they still suffer in cases where reasoning over underlying commonsense knowledge is required during generation. Existing approaches that integrate com monsense knowledge into generative pre-trained language models simply transfer relational knowledge by post-training on individual knowledge triples while ignoring rich connections within the knowledge graph. We argue that exploiting both the structural and semantic information of the knowledge graph facilitates commonsense-aware text generation. In this paper, we propose Generation with Multi-Hop Reasoning Flow (GRF) that enables pre-trained models with dynamic multi-hop reasoning on multi-relational paths extracted from the external commonsense knowledge graph. We empirically show that our model outperforms existing baselines on three text generation tasks that require reasoning over commonsense knowledge. We also demonstrate the effectiveness of the dynamic multi-hop reasoning module with reasoning paths inferred by the model that provide rationale to the generation.
201 - Daniel Khashabi 2019
Natural language understanding (NLU) of text is a fundamental challenge in AI, and it has received significant attention throughout the history of NLP research. This primary goal has been studied under different tasks, such as Question Answering (QA) and Textual Entailment (TE). In this thesis, we investigate the NLU problem through the QA task and focus on the aspects that make it a challenge for the current state-of-the-art technology. This thesis is organized into three main parts: In the first part, we explore multiple formalisms to improve existing machine comprehension systems. We propose a formulation for abductive reasoning in natural language and show its effectiveness, especially in domains with limited training data. Additionally, to help reasoning systems cope with irrelevant or redundant information, we create a supervised approach to learn and detect the essential terms in questions. In the second part, we propose two new challenge datasets. In particular, we create two datasets of natural language questions where (i) the first one requires reasoning over multiple sentences; (ii) the second one requires temporal common sense reasoning. We hope that the two proposed datasets will motivate the field to address more complex problems. In the final part, we present the first formal framework for multi-step reasoning algorithms, in the presence of a few important properties of language use, such as incompleteness, ambiguity, etc. We apply this framework to prove fundamental limitations for reasoning algorithms. These theoretical results provide extra intuition into the existing empirical evidence in the field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا