ﻻ يوجد ملخص باللغة العربية
The recent observation of high-lying Rydberg states of excitons in semiconductors with relatively high binding energy motivates exploring their applications in quantum nonlinear optics and quantum information processing. Here, we study Rydberg excitation dynamics of a mesoscopic array of excitons to demonstrate its application in simulation of quantum many-body dynamics. We show that the $mathbb{Z}_2$-ordered phase can be reached using physical parameters available for cuprous oxide (Cu$_2$O) by optimizing driving laser parameters such as duration, intensity, and frequency. In an example, we study the application of our proposed system to solving the Maximum Independent Set (MIS) problem based on the Rydberg blockade effect.
We investigate the excitation dynamics of Rydberg atoms in ultracold atomic samples by expanding the excitation probability and the correlation function between excited atoms in powers of the isolated atom Rabi frequency $Omega$. In the Heisenberg pi
We study the propagation of strongly interacting Rydberg polaritons through an atomic medium in a one-dimensional optical lattice. We derive an effective single-band Hubbard model to describe the dynamics of the dark state polaritons under realistic
Controlling non-equilibrium quantum dynamics in many-body systems is an outstanding challenge as interactions typically lead to thermalization and a chaotic spreading throughout Hilbert space. We experimentally investigate non-equilibrium dynamics fo
In recent years, there has been a significant progress in the development of digital quantum processors. The state-of-the-art quantum devices are imperfect, and fully-algorithmic fault-tolerant quantum computing is a matter of future. Until technolog
In the last twenty years, Rydberg atoms have become a versatile and much studied system for implementing quantum many-body systems in the framework of quantum computation and quantum simulation. However, even in the absence of coherent evolution Rydb