ترغب بنشر مسار تعليمي؟ اضغط هنا

Engineering optically active defects in hexagonal boron nitride using focused ion beam and water

68   0   0.0 ( 0 )
 نشر من قبل Evgenii Glushkov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hexagonal boron nitride (hBN) has emerged as a promising material platform for nanophotonics and quantum sensing, hosting optically-active defects with exceptional properties such as high brightness and large spectral tuning. However, precise control over deterministic spatial positioning of emitters in hBN remained elusive for a long time, limiting their proper correlative characterization and applications in hybrid devices. Recently, focused ion beam (FIB) systems proved to be useful to engineer several types of spatially-defined emitters with various structural and photophysical properties. Here we systematically explore the physical processes leading to the creation of optically-active defects in hBN using FIB, and find that beam-substrate interaction plays a key role in the formation of defects. These findings are confirmed using transmission electron microscopy that reveals local mechanical deterioration of the hBN layers and local amorphization of ion beam irradiated hBN. Additionally, we show that upon exposure to water, amorphized hBN undergoes a structural and optical transition between two defect types with distinctive emission properties. Moreover, using super-resolution optical microscopy combined with atomic force microscopy, we pinpoint the exact location of emitters within the defect sites, confirming the role of defected edges as primary sources of fluorescent emission. This lays the foundation for FIB-assisted engineering of optically-active defects in hBN with high spatial and spectral control for applications ranging from integrated photonics, to quantum sensing to nanofluidics.

قيم البحث

اقرأ أيضاً

Hexagonal boron nitride (hBN)-long-known as a thermally stable ceramic-is now available as atomically smooth, single-crystalline flakes, revolutionizing its use in optoelectronics. For nanophotonics, these flakes offer strong nonlinearities, hyperbol ic dispersion, and single-photon emission, providing unique properties for optical and quantum-optical applications. For nanoelectronics, their pristine surfaces, chemical stability, and wide bandgap have made them the key substrate, encapsulant, and gate dielectric for two-dimensional electronic devices. However, while exploring these advantages, researchers have been restricted to flat flakes or those patterned with basic slits and holes, severely limiting advanced architectures. If freely varying flake profiles were possible, the hBN structure would present a powerful design parameter to further manipulate the flow of photons, electrons, and excitons in next-generation devices. Here, we demonstrate freeform nanostructuring of hBN by combining thermal scanning-probe lithography and reactive-ion etching to shape flakes with surprising fidelity. We leverage sub-nanometer height control and high spatial resolution to produce previously unattainable flake structures for a broad range of optoelectronic applications. For photonics, we fabricate microelements and show the straightforward transfer and integration of such elements by placing a spherical hBN microlens between two planar mirrors to obtain a stable, high-quality optical microcavity. We then decrease the patterning length scale to introduce Fourier surfaces for electrons, creating sophisticated, high-resolution landscapes in hBN, offering new possibilities for strain and band-structure engineering. These capabilities can advance the discovery and exploitation of emerging phenomena in hyperbolic metamaterials, polaritonics, twistronics, quantum materials, and 2D optoelectronic devices.
Two-dimensional hexagonal boron nitride offers intriguing opportunities for advanced studies of light-matter interaction at the nanoscale, specifically for realizations in quantum nanophotonics. Here, we demonstrate the engineering of optically-addre ssable spin defects based on the negatively-charged boron vacancy center. We show that these centers can be created in exfoliated hexagonal boron nitride using a variety of focused ion beams (nitrogen, xenon and argon), with nanoscale precision. Using a combination of laser and resonant microwave excitation, we carry out optically detected magnetic resonance spectroscopy measurements, which reveal a zero-field ground state splitting for the defect of ~3.46 GHz. We also perform photoluminescence excitation spectroscopy and temperature dependent photoluminescence measurements to elucidate the photophysical properties of the center. Our results are important for advanced quantum and nanophotonics realizations involving manipulation and readout of spin defects in hexagonal boron nitride.
Hexagonal boron nitride (hBN) is an emerging layered material that plays a key role in a variety of two-dimensional devices, and has potential applications in nanophotonics and nanomechanics. Here, we demonstrate the first cavity optomechanical syste m incorporating hBN. Nanomechanical resonators consisting of hBN beams with predicted thickness between 8 nm and 51 nm were fabricated using electron beam induced etching and positioned in the optical nearfield of silicon microdisk cavities. A 160 fm/$sqrt{text{Hz}}$ sensitivity to the hBN nanobeam motion is demonstrated, allowing observation of thermally driven mechanical resonances with frequencies between 1 and 23 MHz, and mechanical quality factors reaching 1100 at room temperature in high vacuum. In addition, the role of air damping is studied via pressure dependent measurements. Our results constitute an important step towards realizing integrated optomechanical circuits employing hBN.
Quantum emitters in hexagonal boron nitride (hBN) are promising building blocks for the realization of integrated quantum photonic systems. However, their spectral inhomogeneity currently limits their potential applications. Here, we apply tensile st rain to quantum emitters embedded in few-layer hBN films and realize both red and blue spectral shifts with tuning magnitudes up to 65 meV, a record for any two-dimensional quantum source. We demonstrate reversible tuning of the emission and related photophysical properties. We also observe rotation of the optical dipole in response to strain, suggesting the presence of a second excited state. We derive a theoretical model to describe strain-based tuning in hBN, and the rotation of the optical dipole. Our work demonstrates the immense potential for strain tuning of quantum emitters in layered materials to enable their employment in scalable quantum photonic networks.
Optically active spin defects in wide-bandgap materials have many potential applications in quantum information and quantum sensing. Spin defects in two-dimensional layered van der Waals materials are just emerging to be investigated. Here we demonst rate that optically-addressable spin ensembles in hexagonal boron nitride (hBN) can be generated by femtosecond laser irradiation. We observe optically detected magnetic resonance (ODMR) of hBN spin defects created by laser irradiation. We show that the creation of spin defects in hBN is strongly affected by the pulse energy of the femtosecond laser. When the laser pulse number is less than a few thousand, the pulse number only affects the density of defects but not the type of defects. With proper laser parameters, spin defects can be generated with a high probability of success. Our work provides a convenient way to create spin defects in hBN by femtosecond laser writing, which shows promising prospects for quantum technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا