ﻻ يوجد ملخص باللغة العربية
We present high accuracy relativistic coupled cluster calculations of the first and second ionisation potentials and the electron affinity of the heaviest element in the Periodic Table, Og. The results were extrapolated to the basis set limit and augmented with the higher order excitations (up to perturbative quadruples), the Breit contribution, and the QED self energy and vacuum polarisation corrections. We have performed an extensive investigation of the effect of the various computational parameters on the calculated properties, which allowed us to assign realistic uncertainties on our predictions. Similar study on the lighter homologue of Og, Rn, yields excellent agreement with experiment for the first ionisation potential and a reliable prediction for the second ionisation potential.
The electron affinity (EA) of superheavy element Og is calculated by the use of the relativistic Fock-space coupled cluster (FSCC) and configuration interaction methods. The FSCC cluster operator expansion included single, double, and triple excitati
One of the most important properties influencing the chemical behavior of an element is the energy released with the addition of an extra electron to the neutral atom, referred to as the electron affinity (EA). Among the remaining elements with unkno
The B-spline R-matrix and the convergent close-coupling methods are used to study electron collisions with neutral beryllium over an energy range from threshold to 100 eV. Coupling to the target continuum significantly affects the results for transit
Electron-impact direct double ionization (DDI) process is studied as a sequence of two and three step processes. Contribution from ionization-ionization, ionization-excitation-ionization, and excitation-ionization-ionization processes is taken into a
Electron-impact ionization of lithium is studied using the convergent close-coupling (CCC) method at 25.4 and 54.4 eV. Particular attention is paid to the spin-dependence of the ionization cross sections. Convergence is found to be more rapid for the