ترغب بنشر مسار تعليمي؟ اضغط هنا

The anomalous $Zbbar{b}$ couplings at the HERA and EIC

264   0   0.0 ( 0 )
 نشر من قبل Bin Yan
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

To resolve the long-standing discrepancy between the precision measurement of bottom quark forward-backward asymmetry at LEP/SLC and the Standard Model prediction, we propose a novel method to probe the $Zbbar{b}$ coupling by measuring the single-spin asymmetry $A_e^b$ of the polarized lepton cross section in neutral current DIS processes with a $b$-tagged jet at HERA and EIC. Depending on the tagging efficiency of the final state $b$-jet, the measurement of $A_e^b$ at HERA can already partially break the degeneracy found in the anomalous $Zbbar{b}$ coupling, as implied by the LEP and SLC precision electroweak data. In the first year run of the EIC, the measurement of $A_e^b$ can already break the degeneracy, due to its much larger luminosity and higher electron beam polarization. With enough integrated luminosity collected at the EIC, it is possible to either verify or exclude the LEP data and resolve the $A_{rm FB}^b$ puzzle. We also discuss the complementary roles between the proposed $A_e^b$ measurement at EIC and the measurement of $gg to Zh$ cross section at the HL-LHC in constraining the anomalous $Zbbar{b}$ coupling.



قيم البحث

اقرأ أيضاً

62 - Bin Yan , C.-P. Yuan 2021
The bottom quark forward-backward asymmetry ($A_{FB}^b$) data at LEP exhibits a long-standing discrepancy with the standard model prediction. We propose a novel method to probe the $Zbbar{b}$ interactions through $ggto Zh$ production at the LHC, whic h is sensitive to the axial-vector component of the $Zbbar{b}$ couplings. We demonstrate that the $Zh$ data collected at the 13 TeV LHC can already resolve the apparent degeneracy of the anomalous $Zbbar{b}$ couplings implied by the LEP precision electroweak measurements, with a strong dependence on the observed distribution of the $Z$ boson transverse momentum. We also show the potential of the HL-LHC to either verify or exclude the anomalous $Zbbar{b}$ couplings observed at LEP through measuring the $Zh$ production rate at the HL-LHC, and this conclusion is not sensitive to possible new physics contribution induced by top quark or Higgs boson anomalous couplings in the loop.
We study inclusive $J/psi$ photoproduction at NLO at large $P_T$ at HERA and the EIC. Our computation includes NLO QCD leading-$P_T$ corrections, QED contributions via an off-shell photon as well as those from $J/psi$+charm channels. For the latter, we employ the variable-flavour-number scheme. Our results are found to agree with the latest HERA data by H1 and provide, for the first time, a reliable estimate of the EIC reach for such a measurement. Finally, we demonstrate the observability of $J/psi$+charm production and the sensitivy to probe the non-perturbative charm content of the proton at high $x$, also known as intrinsic charm, at the EIC.
We study the inclusive J/psi production at large transverse momenta at lepton-hadron colliders in the limit when the exchange photon is quasi real, also referred to as photoproduction. Our computation includes the leading-P_T leading-v next-to-leadin g alpha_s corrections. In particular, we consider the contribution from J/psi plus another charm quark, by employing for the first time in quarkonium photoproduction the variable-flavour-number scheme. We also include a QED-induced contribution via an off-shell photon which remained ignored in the literature and which we show to be the leading contribution at high P_T within the reach of the EIC. In turn, we use our computation of J/psi+charm to demonstrate its observability at the future EIC and the EIC sensitivity to probe the non-perturbative charm content of the proton at high x.
78 - V. Guzey , M. Klasen 2020
We present a first, detailed study of diffractive dijet photoproduction at the recently approved electron-ion collider (EIC) at BNL. Apart from establishing the kinematic reaches for various beam types, energies and kinematic cuts, we make precise pr edictions at next-to-leading order (NLO) of QCD in the most important kinematic variables. We show that the EIC will provide new and more precise information on the diffractive parton density functions (PDFs) in the pomeron than previously obtained at HERA, illuminate the still disputed mechanism of global vs. only resolved-photon factorization breaking, and provide access to a completely new quantity, i.e. nuclear diffractive PDFs.
We present a comprehensive analysis of the potential sensitivity of the Electron-Ion Collider (EIC) to charged lepton flavor violation (CLFV) in the channel $epto tau X$, within the model-independent framework of the Standard Model Effective Field Th eory (SMEFT). We compute the relevant cross sections to leading order in QCD and electroweak corrections and perform simulations of signal and SM background events in various $tau$ decay channels, suggesting simple cuts to enhance the associated estimated efficiencies. To assess the discovery potential of the EIC in $tau$-$e$ transitions, we study the sensitivity of other probes of this physics across a broad range of energy scales, from $pp to e tau X$ at the Large Hadron Collider to decays of $B$ mesons and $tau$ leptons, such as $tau to e gamma$, $tau to e ell^+ ell^-$, and crucially the hadronic modes $tau to e Y$ with $Y in { pi, K, pi pi, K pi, ...}$. We find that electroweak dipole and four-fermion semi-leptonic operators involving light quarks are already strongly constrained by $tau$ decays, while operators involving the $c$ and $b$ quarks present more promising discovery potential for the EIC. An analysis of three models of leptoquarks confirms the expectations based on the SMEFT results. We also identify future directions needed to maximize the reach of the EIC in CLFV searches: these include an optimization of the $tau$ tagger in hadronic channels, an exploration of background suppression through tagging $b$ and $c$ jets in the final state, and a global fit by turning on all SMEFT couplings, which will likely reveal new discovery windows for the EIC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا