ترغب بنشر مسار تعليمي؟ اضغط هنا

Maximal subspace averages

72   0   0.0 ( 0 )
 نشر من قبل Ioannis Parissis
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study maximal operators associated to singular averages along finite subsets $Sigma$ of the Grassmannian $mathrm{Gr}(d,n)$ of $d$-dimensional subspaces of $mathbb R^n$. The well studied $d=1$ case corresponds to the the directional maximal function with respect to arbitrary finite subsets of $mathrm{Gr}(1,n)=mathbb S^{n-1}$. We provide a systematic study of all cases $1leq d<n$ and prove essentially sharp $L^2(mathbb R^n)$ bounds for the maximal subspace averaging operator in terms of the cardinality of $Sigma$, with no assumption on the structure of $Sigma$. In the codimension $1$ case, that is $n=d+1$, we prove the precise critical weak $(2,2)$-bound. Drawing on the analogy between maximal subspace averages and $(d,n)$-Nikodym maximal averages, we also formulate the appropriate maximal Nikodym conjecture for general $1<d<n$ by providing examples that determine the critical $L^p$-space for the $(d,n)$-Nikodym problem. Unlike the $d=1$ case, the maximal Kakeya and Nikodym problems are shown not to be equivalent when $d>1$. In this context, we prove the best possible $L^2(mathbb R^n)$-bound for the $(d,n)$-Nikodym maximal function for all combinations of dimension and codimension. Our estimates rely on Fourier analytic almost orthogonality principles, combined with polynomial partitioning, but we also use spatial analysis based on the precise calculation of intersections of $d$-dimensional plates in $mathbb R^n$.

قيم البحث

اقرأ أيضاً

372 - Doowon Koh , Sujin Lee 2021
We study both averaging and maximal averaging problems for Product $j$-varieties defined by $Pi_j={xin mathbb F_q^d: prod_{k=1}^d x_k=j}$ for $jin mathbb F_q^*,$ where $mathbb F_q^d$ denotes a $d$-dimensional vector space over the finite field $mathb b F_q$ with $q$ elements. We prove the sharp $L^pto L^r$ boundedness of averaging operators associated to Product $j$-varieties. We also obtain the optimal $L^p$ estimate for a maximal averaging operator related to a family of Product $j$-varieties ${Pi_j}_{jin mathbb F_q^*}.$
86 - Robert Kesler 2018
We exhibit a range of $ell ^{p}(mathbb{Z}^d)$-improving properties for the discrete spherical maximal average in every dimension $dgeq 5$. The strategy used to show these improving properties is then adapted to establish sparse bounds, which extend t he discrete maximal theorem of Magyar, Stein, and Wainger to weighted spaces. In particular, the sparse bounds imply that the discrete spherical maximal average is a bounded map from $ell^2(w)$ into $ell^2(w)$ provided $w^{frac{d}{d-4}+delta}$ belongs to the Muckenhoupt class $A_2$ for some $delta>0.$
For a polynomial $P$ mapping the integers into the integers, define an averaging operator $A_{N} f(x):=frac{1}{N}sum_{k=1}^N f(x+P(k))$ acting on functions on the integers. We prove sufficient conditions for the $ell^{p}$-improving inequality begin{e quation*} |A_N f|_{ell^q(mathbb{Z})} lesssim_{P,p,q} N^{-d(frac{1}{p}-frac{1}{q})} |f|_{ell^p(mathbb{Z})}, qquad N inmathbb{N}, end{equation*} where $1leq p leq q leq infty$. For a range of quadratic polynomials, the inequalities established are sharp, up to the boundary of the allowed pairs of $(p,q)$. For degree three and higher, the inequalities are close to being sharp. In the quadratic case, we appeal to discrete fractional integrals as studied by Stein and Wainger. In the higher degree case, we appeal to the Vinogradov Mean Value Theorem, recently established by Bourgain, Demeter, and Guth.
Consider averages along the prime integers $ mathbb P $ given by begin{equation*} mathcal{A}_N f (x) = N ^{-1} sum_{ p in mathbb P ;:; pleq N} (log p) f (x-p). end{equation*} These averages satisfy a uniform scale-free $ ell ^{p}$-improving estimate. For all $ 1< p < 2$, there is a constant $ C_p$ so that for all integer $ N$ and functions $ f$ supported on $ [0,N]$, there holds begin{equation*} N ^{-1/p }lVert mathcal{A}_N frVert_{ell^{p}} leq C_p N ^{- 1/p} lVert frVert_{ell^p}. end{equation*} The maximal function $ mathcal{A}^{ast} f =sup_{N} lvert mathcal{A}_N f rvert$ satisfies $ (p,p)$ sparse bounds for all $ 1< p < 2$. The latter are the natural variants of the scale-free bounds. As a corollary, $ mathcal{A}^{ast} $ is bounded on $ ell ^{p} (w)$, for all weights $ w$ in the Muckenhoupt $A_p$ class. No prior weighted inequalities for $ mathcal{A}^{ast} $ were known.
Let $ lambda ^2 in mathbb N $, and in dimensions $ dgeq 5$, let $ A_{lambda } f (x)$ denote the average of $ f ;:; mathbb Z ^{d} to mathbb R $ over the lattice points on the sphere of radius $lambda$ centered at $x$. We prove $ ell ^{p}$ improving pr operties of $ A_{lambda }$. begin{equation*} lVert A_{lambda }rVert_{ell ^{p} to ell ^{p}} leq C_{d,p, omega (lambda ^2 )} lambda ^{d ( 1-frac{2}p)}, qquad tfrac{d-1}{d+1} < p leq frac{d} {d-2}. end{equation*} It holds in dimension $ d =4$ for odd $ lambda ^2 $. The dependence is in terms of $ omega (lambda ^2 )$, the number of distinct prime factors of $ lambda ^2 $. These inequalities are discre
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا