ﻻ يوجد ملخص باللغة العربية
We prove the $r$-spin cobordism hypothesis in the setting of (weak) 2-categories for every positive integer $r$: The 2-groupoid of 2-dimensional fully extended $r$-spin TQFTs with given target is equivalent to the homotopy fixed points of an induced $textrm{Spin}_2^r$-action. In particular, such TQFTs are classified by fully dualisable objects together with a trivialisation of the $r$-th power of their Serre automorphisms. For $r=1$ we recover the oriented case (on which our proof builds), while ordinary spin structures correspond to $r=2$. To construct examples, we explicitly describe $textrm{Spin}_2^r$-homotopy fixed points in the equivariant completion of any symmetric monoidal 2-category. We also show that every object in a 2-category of Landau--Ginzburg models gives rise to fully extended spin TQFTs, and that half of these do not factor through the oriented bordism 2-category.
A generalised orbifold of a defect TQFT $mathcal{Z}$ is another TQFT $mathcal{Z}_{mathcal{A}}$ obtained by performing a state sum construction internal to $mathcal{Z}$. As an input it needs a so-called orbifold datum $mathcal{A}$ which is used to lab
We introduce the notion of $n$-dimensional topological quantum field theory (TQFT) with defects as a symmetric monoidal functor on decorated stratified bordisms of dimension $n$. The familiar closed or open-closed TQFTs are special cases of defect TQ
We initiate a systematic study of 3-dimensional `defect topological quantum field theories, that we introduce as symmetric monoidal functors on stratified and decorated bordisms. For every such functor we construct a tricategory with duals, which is
We specialise the construction of orbifold graph TQFTs introduced in Carqueville et al., arXiv:2101.02482 to Reshetikhin-Turaev defect TQFTs. We explain that the modular fusion category ${mathcal{C}}_{mathcal{A}}$ constructed in Muleviv{c}ius-Runkel,
It always happens: you have a talk for dinner and nothing prepared. Your signature dish never fails, but you have served it too many times already and youd like to surprise your guests with something new. Try these quick, light and colourful reinterp