ترغب بنشر مسار تعليمي؟ اضغط هنا

Ferromagnetic half-metallicity in YBaCo2O6 and spin-states driven metal-insulator transition

117   0   0.0 ( 0 )
 نشر من قبل Ke Yang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cobaltates have rich spin-states and diverse properties. Using spin-state pictures and firstprinciples calculations, here we study the electronic structure and magnetism of the mixed-valent double perovskite YBaCo2O6. We find that YBaCo2O6 is in the formal intermediate-spin (IS) Co3+/low-spin (LS) Co4+ ground state. The hopping of eg electron from IS-Co3+ to LS-Co4+ via double exchange gives rise to a ferromagnetic half-metallicity, which well accounts for the recent experiments. The reduction of both magnetization and Curie temperature by oxygen vacancies is discussed, aided with Monte Carlo simulations. We also explore several other possible spin-states and their interesting electronic/magnetic properties. Moreover, we predict that a volume expansion more than 3% would tune YBaCo2O6 into the high-spin (HS) Co3+/LS Co4+ ferromagnetic state and simultaneously drive a metal-insulator transition. Therefore, spin-states are a useful parameter for tuning the material properties of cobaltates.



قيم البحث

اقرأ أيضاً

Famous for its spin-state puzzle, LaSrCoO$_4$ (Co$^{3+}$) is an intermediate between antiferromagnetic (AFM) La$_2$CoO$_4$ (Co$^{2+}$) and ferromagnetic (FM) Sr$_2$CoO$_4$ (Co$^{4+}$). The appearance of the Co$^{3+}$ valence state (not present in the end compounds) is intriguing because of the spin-state transitions associated with it. In this work, we report two magnetic transitions in LaSrCoO$_4$: (i) a transition at T $=$ T$_c$ $simeq$ 225 K, from the paramagnetic state to a state with an inhomogeneous long-range ferromagnetic (FM) order wherein finite FM clusters coexist with infinite FM matrix in the percolation sense, and (ii) the transition to the cluster spin glass (CSG) state at T $=$ T$_g$ $simeq$ 8 K. Finite FM clusters (which at low temperatures give rise to the cluster spin glass state) and infinite FM matrix are formed due to the spin-spin interactions brought about by the inhomogeneously distributed Co$^{3+}$ high spin (HS) and Co$^{3+}$ low spin (LS) ions. A firm support to the presence of an unconventional (inhomogeneous) ferromagnetic order comes from the anomalous values of the critical exponents $beta$, $gamma$ and $delta$ for the spontaneous magnetization, `zero-field magnetic susceptibility and the critical M - H isotherm, while the coexistence of HS Co$^{3+}$ and LS Co$^{3+}$ ions is confirmed by the results of the extended X-ray absorption fine structure spectroscopy.
284 - Sieu D. Ha , Gulgun H. Aydogdu , 2011
The correlated oxide SmNiO3 (SNO) exhibits an insulator to metal transition (MIT) at 130 {deg}C in bulk form. We report on synthesis and electron transport in SNO films deposited on LaAlO3 (LAO) and Si single crystals. X-ray diffraction studies show that compressively strained single-phase SNO grows epitaxially on LAO while on Si, mixed oxide phases are observed. MIT is observed in resistance-temperature measurements in films grown on both substrates, with charge transport in-plane for LAO/SNO films and out-of-plane for Si/SNO films. Electrically-driven memristive behavior is realized in LAO/SNO films, suggesting that SNO may be relevant for neuromorphic devices.
It was recently reported that a continuous electric current is a powerful control parameter to trigger changes in the electronic structure and metal-insulator transitions (MITs) in Ca2RuO4. However, the spatial evolution of the MIT and the implicatio ns of the unavoidable Joule heating have not been clarified yet, often hindered by the difficulty to asses the local sample temperature. In this work, we perform infrared thermal imaging on single-crystal Ca2RuO4 while controlling the MIT by electric current. The change in emissivity at the phase transition allows us to monitor the gradual formation and expansion of metallic phase upon increasing current. Our local temperature measurements indicate that, within our experimental resolution, the MIT always occurs at the same local transition temperatures, irrespectively if driven by temperature or by current. Our results highlight the importance of local heating, phase coexistence, and microscale inhomogeneity when studying strongly correlated materials under the flow of electric current.
Two-dimensional ferromagnetic (2D FM) half-metal holds great potential for quantum magnetoelectronics and spintronic devices. Here, using density functional calculations and magnetic pictures, we study the electronic structure and magnetic properties of the novel van der Waals (vdW) metal-organic framework (MOF), CrCl2(N2C4H4)2, i.e. CrCl2(pyrazine)2. Our results show that CrCl2(pyrazine)2 is a 2D FM half-metal, having a strong intralayer FM coupling but a much weak interlayer one due to the vdW spacing. Its spin-polarized conduction bands are formed by the pyrazine molecular orbitals and are polarized by the robust Cr3+ local spin = 3/2. These results agree with the recent experiments [Pedersen et al., Nature Chemistry, 2018, 10, 1056]. More interestingly, CrCl2(pyrazine)2 monolayer has a strong doping tunability of the FM half-metallicity, and the FM coupling would be significantly enhanced by electron doping. Our work highlights a vital role of the organic ligand and suggests that vdW MOF is also worth exploration for new 2D magnetic materials.
75 - L. Craco , M. S. Laad , S. Leoni 2016
Unusual metallic states involving breakdown of the standard Fermi-liquid picture of long-lived quasiparticles in well-defined band states emerge at low temperatures near correlation-driven Mott transitions. Prominent examples are ill-understood metal lic states in $d$- and $f$-band compounds near Mott-like transitions. Finding of superconductivity in solid O$_{2}$ on the border of an insulator-metal transition at high pressures close to 96~GPa is thus truly remarkable. Neither the insulator-metal transition nor superconductivity are understood satisfactorily. Here, we undertake a first step in this direction by focussing on the pressure-driven insulator-metal transition using a combination of first-principles density-functional and many-body calculations. We report a striking result: the finding of an orbital-selective Mott transition in a pure $p$-band elemental system. We apply our theory to understand extant structural and transport data across the transition, and make a specific two-fluid prediction that is open to future test. Based thereupon, we propose a novel scenario where soft multiband modes built from microscopically coexisting itinerant and localized electronic states are natural candidates for the pairing glue in pressurized O$_{2}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا