ﻻ يوجد ملخص باللغة العربية
(RFT) allows very high-Q active mode resonators, promising crystal-less monolithic clock generation for mmWave systems. However, there is a strong need for design of mmWave oscillators that utilize the high-Q of active-mode RFT (AM-RFT) optimally, while handling unique challenges such as resonators low electromechanical transduction. In this brief, we develop a theory and through design and post-layout simulations in 14 nm Global Foundry process, we show the first active oscillator with AM-RFT at 30 GHz, which improves the fundamental limits of phase noise and figure-of-merit as compared to the oscillators with conventional LC resonators. For AM-RFT with Q factor of 10K, post layout simulation results show that the proposed oscillator exhibits phase noise less than -140 dBc per Hz and figure-of-merit greater than 228 dBc per Hz at 1 MHz offset for 30 GHz center frequency, which are more than 25 dB better than the existing monolithic LC oscillators.
Very small electromechanical coupling coefficient in micro-electromechanical systems (MEMS) or acoustic resonators is quite of a concern for oscillator performance, specially at mmWave frequencies. This small coefficient is the manifestation of the s
Long-lived, high-frequency phonons are valuable for applications ranging from optomechanics to emerging quantum systems. For scientific as well as technological impact, we seek high-performance oscillators that offer a path towards chip-scale integra
We describe the measurement and modeling of amplitude noise and phase noise in ultra-high Q nanomechanical resonators made from stoichiometric silicon nitride. With quality factors exceeding 2 million, the resonators noise performance is studied with
Optical microcavities confine light spatially and temporally and find application in a wide range of fundamental and applied studies. In many areas, the microcavity figure of merit is not only determined by photon lifetime (or the equivalent quality-
In this paper, millimeter wave (mmWave) wireless channel characteristics (Doppler spread and path loss modeling) for Unmanned Aerial Vehicles (UAVs) assisted communication is analyzed and studied by emulating the real UAV motion using a robotic arm.