ترغب بنشر مسار تعليمي؟ اضغط هنا

Schubert Eisenstein series and Poisson summation for Schubert varieties

115   0   0.0 ( 0 )
 نشر من قبل Jayce Getz
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The first author and Bump defined Schubert Eisenstein series by restricting the summation in a degenerate Eisenstein series to a particular Schubert variety. In the case of $mathrm{GL}_3$ over $mathbb{Q}$ they proved that these Schubert Eisenstein series have meromorphic continuations in all parameters and conjectured the same is true in general. We revisit their conjecture and relate it to the program of Braverman, Kazhdan, Lafforgue, Ng^o, and Sakellaridis aimed at establishing generalizations of the Poisson summation formula. We prove the Poisson summation formula for certain schemes closely related to Schubert varieties and use it to refine and establish the conjecture of the first author and Bump in many cases.



قيم البحث

اقرأ أيضاً

88 - Davide Franco 2018
We give a short and self-contained proof of the Decomposition Theorem for the non-small resolution of a Special Schubert variety. We also provide an explicit description of the perverse cohomology sheaves. As a by-product of our approach, we obtain a simple proof of the Relative Hard Lefschetz Theorem.
We study the geometry of equicharacteristic partial affine flag varieties associated to tamely ramified groups $G$ in characteristics $p>0$ dividing the order of the fundamental group $pi_1(G_{text{der}})$. We obtain that most Schubert varieties are not normal and provide an explicit criterion for when this happens. Apart from this, we show, on the one hand, that loop groups of semisimple groups satisfying $p mid lvert pi_1(G_{text{der}})rvert$ are not reduced, and on the other hand, that their integral realizations are ind-flat. Our methods allow us to classify all tamely ramified Pappas-Zhu local models of Hodge type which are normal.
This paper defines and studies permutation representations on the equivariant cohomology of Schubert varieties, as representations both over C and over C[t_1, t_2,...,t_n]. We show these group actions are the same as an action of simple transposition s studied geometrically by M. Brion, and give topological meaning to the divided difference operators studied by Berstein-Gelfand-Gelfand, Demazure, Kostant-Kumar, and others. We analyze these representations using the combinatorial approach to equivariant cohomology introduced by Goresky-Kottwitz-MacPherson. We find that each permutation representation on equivariant cohomology produces a representation on ordinary cohomology that is trivial, though the equivariant representation is not.
Regular semisimple Hessenberg varieties are a family of subvarieties of the flag variety that arise in number theory, numerical analysis, representation theory, algebraic geometry, and combinatorics. We give a Giambelli formula expressing the classes of regular semisimple Hessenberg varieties in terms of Chern classes. In fact, we show that the cohomology class of each regular semisimple Hessenberg variety is the specialization of a certain double Schubert polynomial, giving a natural geometric interpretation to such specializations. We also decompose such classes in terms of the Schubert basis for the cohomology ring of the flag variety. The coefficients obtained are nonnegative, and we give closed combinatorial formulas for the coefficients in many cases. We introduce a closely related family of schemes called regular nilpotent Hessenberg schemes, and use our results to determine when such schemes are reduced.
We consider tangent cones of Schubert varieties in the complete flag variety, and investigate the problem when the tangent cones of two different Schubert varieties coincide. We give a sufficient condition for such coincidence, and formulate a conjec ture that provides a necessary condition. In particular, we show that all Schubert varieties corresponding to the Coxeter elements of the Weyl group have the same tangent cone. Our main tool is the notion of pillar entries in the rank matrix counting the dimensions of the intersections of a given flag with the standard one. This notion is a version of Fultons essential set. We calculate the dimension of a Schubert variety in terms of the pillar entries of the rank matrix.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا