ترغب بنشر مسار تعليمي؟ اضغط هنا

Outflows in the Radio-Intermediate Quasar III Zw 2: A Polarization Study with the EVLA & uGMRT

69   0   0.0 ( 0 )
 نشر من قبل Silpa Sasikumar
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from a polarization study of the radio-intermediate quasar, III Zw 2, at a redshift of 0.0893, with the upgraded Giant Metrewave Radio Telescope (uGMRT) at 685 MHz and the Karl Jansky Very Large Array (VLA) at 5 and 34 GHz. We detect a kpc-scale outflow, exhibiting transverse magnetic (B-) fields. The curved jet terminates in a bow-shock-like radio structure with inferred B-fields aligned with the lobe edges. We suggest that the radio outflow in III Zw 2 is a combination of a collimated jet along with a wind-like component. This wind component could be a magnetized accretion disk wind or the outer layers of a broadened jet or a combination of both. The current data cannot differentiate between these possibilities. We also detect kpc-scale lobe emission that is misaligned with the primary lobes in the uGMRT images. The spectral indices and the electron lifetimes in the misaligned lobe are similar to the primary lobe, suggesting that the misaligned lobe is not a relic. We propose that changing spectral states of the accretion disk, and the subsequent intermittent behaviour of the outflow, along with the close interplay between the jet and wind could explain the radio-intermediate nature of III Zw 2. Our study shows that radio-intermediate quasars are promising sources for understanding the role of jets and winds in galaxy evolution and demonstrates the power of radio polarization studies towards achieving this.



قيم البحث

اقرأ أيضاً

The remnant radio galaxies in galaxy clusters are important sources of seed relativistic electron population in the intra-cluster medium (ICM). Their occurrence and spectral properties are poorly studied. In this work we present a broadband study of the radio relic in the galaxy cluster Abell 4038 using the Upgraded Giant Metrewave Radio Telescope (uGMRT). We present the uGMRT images in the bands 300 - 500 MHz and 1050 - 1450 MHz having rms noise $70,mu$Jy beam$^{-1}$ and $30,mu$Jy beam$^{-1}$, respectively, that are the deepest images of this field so far. A spectral analysis of the relic over 300 - 1450 MHz using images in sub-bands scaled to have constant fractional bandwidths to achieve a closely matched uv-coverage was carried out. The 100 kpc extent of the relic is divided into Loop, Arc, Bridge and North-end. The Loop has a steep spectral index of $alpha=2.3pm0.2$ ($S_{ u}propto u^{-alpha}$). The North-end has ultra-steep spectra in the range $2.4 - 3.7$. The Arc is found to skirt a curved region seen in the emph{Chandra} X-ray surface brightness image and the highest spectral curvature in it reaches $1.6pm0.3$. We interpret the morphology and spectral properties of the relic in the scenario of an adiabatically compressed cocoon from the past activity of the Brightest Cluster Galaxy in the cluster. A comparison of the properties of the A4038 relic with a sample of 10 such relics is discussed.
For understanding the diversity of jetted active galactic nuclei (AGN) and especially the puzzling wide range in their radio-loudness, it is important to understand what role the magnetic fields play in setting the power of relativistic jets in AGN. We have performed multi-frequency (4-24 GHz) VLBA phase-referencing observations of the radio-intermediate quasar III Zw 2 using three nearby calibrators as reference sources to estimate jet magnetic flux by measuring the core-shift effect. By combining the self-referencing core-shift of each calibrator with the phase-referencing core-shifts, we obtained an upper limit of 0.16 mas for the core-shift between 4 and 24 GHz in III Zw 2. By assuming equipartition between magnetic and particle energy densities and adopting the flux-freezing approximation, we further estimated the upper limit for both magnetic field strength and poloidal magnetic flux threading the black hole. We find that the upper limit to the measured magnetic flux is smaller by at least a factor of five compared to the value predicted by the magnetically arrested disk (MAD) model. An alternative way to derive the jet magnetic field strength from the turnover of the synchrotron spectrum leads to an even smaller upper limit. Hence, the central engine of III Zw 2 has not reached the MAD state, which could explain why it has failed to develop a powerful jet, even though the source harbours a fast-spinning black hole. However, it generates an intermittent jet, which is possibly triggered by small scale magnetic field fluctuations as predicted by the magnetic flux paradigm of Sikora & Begelman (2013). We propose here that combining black hole spin measurements with magnetic field measurements from the VLBI core-shift observations of AGN over a range of jet powers could provide a strong test for the dominant factor setting the jet power relative to the accretion power available.
Ultraviolet and 21-cm observations suggest that the extremely low-metallicity galaxy, I Zw 18, is a stream-fed galaxy containing a pocket of pristine stars responsible for producing nebular He II recombination emission observed in I Zw18-NW. Far-UV s pectra by Hubble/COS and the Far Ultraviolet Spectroscopic Explorer (FUSE) make this suggestion conclusive by demonstrating that the spectrum of I Zw 18-NW shows no metal lines like O VI 1032, 1038 of comparable ionization as the He II recombination emission.
76 - Silpa S. 2020
We present the results from 685 MHz observations with the upgraded Giant Metrewave Radio Telescope (uGMRT) of 22 quasars belonging to the Palomar-Green (PG) quasar sample. Only four sources reveal extended radio structures on $sim$10-30 kpc scales, w hile the rest are largely a combination of a radio core unresolved at the uGMRT resolution of $sim$3-5 arcsec, surrounded by diffuse emission on few kpc to $sim$10 kpc scales. A few sources reveal signatures of barely resolved jets and lobes in their spectral index images that are created using the uGMRT 685 MHz data and similar resolution GHz-frequency data from the Very Large Array. On the basis of their position on the radio-IR correlation as well as the spectral index images, we find that the radio emission in the two radio-loud (RL) quasars and nearly one-third of the radio-quiet (RQ) quasars is active galactic nucleus (AGN) dominated whereas the remaining sources appear to have significant contributions from stellar-related processes along with the AGN. While the two RL sources exhibit inverted spectral index in their cores, the RQ sources exhibit a range of spectral indices varying from flat to steep ($-0.1gtrsimalpha_{R}gtrsim-1.1$) indicating the presence of unresolved jets/lobes or winds. Except for a significant correlation between the 685~MHz radio luminosity and the Eddington ratio, we do not find strong correlations between other 685 MHz radio properties and black hole (BH) properties in the RQ PG sources. This lack of correlations could be explained by the contribution of stellar-related emission, or radio emission from previous AGN activity episodes which may not be related to the current BH activity state.
Radio recombination lines (RRLs) are powerful, extinction-free diagnostics of the ionized gas in young, star-forming regions. Unfortunately, these lines are difficult to detect in external galaxies. We present the results of EVLA observations of the RRL and radio continuum emission at 33 GHz from NGC 253, a nearby nuclear starburst galaxy. We detect the previously unobserved H58a and H59a RRLs and make simultaneous sensitive measurements of the continuum. We measure integrated line fluxes of $44.3 pm 0.7$ W m$^{-2}$ and $39.9 pm 0.8$ W m$^{-2}$ for the H58a and H59a lines, respectively. The thermal gas in NGC 253 is kinematically complex with multiple velocity components. We constrain the density of the thermal gas to $1.4 - 4 times 10^4$ cm$^{-3}$ and estimate an ionizing photon flux of $1 times 10^{53}$ s$^{-1}$. We use the RRL kinematics and the derived ionizing photon flux to show that the nuclear region of NGC 253 is not gravitationally bound, which is consistent with the outflow of gas inferred from the X-ray and Halpha measurements. The line profiles, fluxes, and kinematics of the H58a and H59a lines agree with those of RRLs at different frequencies confirming the accuracy of the previous, more difficult, high frequency observations. We find that the EVLA is an order of magnitude more efficient for extragalactic RRL observations than the VLA. These observations demonstrate both the power of the EVLA and the future potential of extragalactic RRL studies with the EVLA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا