ﻻ يوجد ملخص باللغة العربية
We present results from a polarization study of the radio-intermediate quasar, III Zw 2, at a redshift of 0.0893, with the upgraded Giant Metrewave Radio Telescope (uGMRT) at 685 MHz and the Karl Jansky Very Large Array (VLA) at 5 and 34 GHz. We detect a kpc-scale outflow, exhibiting transverse magnetic (B-) fields. The curved jet terminates in a bow-shock-like radio structure with inferred B-fields aligned with the lobe edges. We suggest that the radio outflow in III Zw 2 is a combination of a collimated jet along with a wind-like component. This wind component could be a magnetized accretion disk wind or the outer layers of a broadened jet or a combination of both. The current data cannot differentiate between these possibilities. We also detect kpc-scale lobe emission that is misaligned with the primary lobes in the uGMRT images. The spectral indices and the electron lifetimes in the misaligned lobe are similar to the primary lobe, suggesting that the misaligned lobe is not a relic. We propose that changing spectral states of the accretion disk, and the subsequent intermittent behaviour of the outflow, along with the close interplay between the jet and wind could explain the radio-intermediate nature of III Zw 2. Our study shows that radio-intermediate quasars are promising sources for understanding the role of jets and winds in galaxy evolution and demonstrates the power of radio polarization studies towards achieving this.
The remnant radio galaxies in galaxy clusters are important sources of seed relativistic electron population in the intra-cluster medium (ICM). Their occurrence and spectral properties are poorly studied. In this work we present a broadband study of
For understanding the diversity of jetted active galactic nuclei (AGN) and especially the puzzling wide range in their radio-loudness, it is important to understand what role the magnetic fields play in setting the power of relativistic jets in AGN.
Ultraviolet and 21-cm observations suggest that the extremely low-metallicity galaxy, I Zw 18, is a stream-fed galaxy containing a pocket of pristine stars responsible for producing nebular He II recombination emission observed in I Zw18-NW. Far-UV s
We present the results from 685 MHz observations with the upgraded Giant Metrewave Radio Telescope (uGMRT) of 22 quasars belonging to the Palomar-Green (PG) quasar sample. Only four sources reveal extended radio structures on $sim$10-30 kpc scales, w
Radio recombination lines (RRLs) are powerful, extinction-free diagnostics of the ionized gas in young, star-forming regions. Unfortunately, these lines are difficult to detect in external galaxies. We present the results of EVLA observations of the