ﻻ يوجد ملخص باللغة العربية
This paper is responding to the MIA-COV19 challenge to classify COVID from non-COVID based on CT lung images. The COVID-19 virus has devastated the world in the last eighteen months by infecting more than 182 million people and causing over 3.9 million deaths. The overarching aim is to predict the diagnosis of the COVID-19 virus from chest radiographs, through the development of explainable vision transformer deep learning techniques, leading to population screening in a more rapid, accurate and transparent way. In this competition, there are 5381 three-dimensional (3D) datasets in total, including 1552 for training, 374 for evaluation and 3455 for testing. While most of the data volumes are in axial view, there are a number of subjects data are in coronal or sagittal views with 1 or 2 slices are in axial view. Hence, while 3D data based classification is investigated, in this competition, 2D images remains the main focus. Two deep learning methods are studied, which are vision transformer (ViT) based on attention models and DenseNet that is built upon conventional convolutional neural network (CNN). Initial evaluation results based on validation datasets whereby the ground truth is known indicate that ViT performs better than DenseNet with F1 scores being 0.76 and 0.72 respectively. Codes are available at GitHub at <https://github/xiaohong1/COVID-ViT>.
The novel corona-virus disease (COVID-19) pandemic has caused a major outbreak in more than 200 countries around the world, leading to a severe impact on the health and life of many people globally. As of Aug 25th of 2020, more than 20 million people
The novel corona-virus disease (COVID-19) pandemic has caused a major outbreak in more than 200 countries around the world, leading to a severe impact on the health and life of many people globally. As of mid-July 2020, more than 12 million people we
The current pandemic, caused by the outbreak of a novel coronavirus (COVID-19) in December 2019, has led to a global emergency that has significantly impacted economies, healthcare systems and personal wellbeing all around the world. Controlling the
Purpose: To present a method that automatically segments and quantifies abnormal CT patterns commonly present in coronavirus disease 2019 (COVID-19), namely ground glass opacities and consolidations. Materials and Methods: In this retrospective study
The health and socioeconomic difficulties caused by the COVID-19 pandemic continues to cause enormous tensions around the world. In particular, this extraordinary surge in the number of cases has put considerable strain on health care systems around