ترغب بنشر مسار تعليمي؟ اضغط هنا

The BINGO Project IV: Simulations for mission performance assessment and preliminary component separation steps

93   0   0.0 ( 0 )
 نشر من قبل Ricardo Landim
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The large-scale distribution of neutral hydrogen (HI) in the Universe is luminous through its 21-cm emission. The goal of the Baryon Acoustic Oscillations from Integrated Neutral Gas Observations - BINGO radio telescope is to detect Baryon Acoustic Oscillations (BAO) at radio frequencies through 21-cm Intensity Mapping (IM). The telescope will span the redshift range 0.127 $< z <$ 0.449 with an instantaneous field-of-view of $14.75^{circ} times 6.0^{circ}$. In this work, we investigate different constructive and operational scenarios of the instrument by generating sky maps as they should be produced by the instrument. In doing this we use a set of end-to-end IM mission simulations. The maps will additionally also be used to evaluate the efficiency of a component separation method (GNILC). We have simulated the kind of data that would be produced in a single-dish IM experiment like BINGO. According to the results obtained we have optimized the focal plane design of the telescope. In addition, the application of the GNILC method on simulated data shows that it is feasible to extract the cosmological signal across a wide range of multipoles and redshifts. The results are comparable with the standard PCA method.

قيم البحث

اقرأ أيضاً

Observing the neutral Hydrogen (HI) distribution across the Universe via redshifted 21-cm line Intensity Mapping (IM) constitutes a powerful probe for cosmology. However, this redshifted 21cm signal is obscured by the foreground emission. This paper addresses the capabilities of the BINGO survey to separate such signals. Specifically, this paper (a) looks in detail at the different residuals left over by foreground components, (b) shows that a noise-corrected spectrum is unbiased and (c) shows that we understand the remaining systematic residuals by analyzing non-zero contributions to the three point function. We use the Generalized Needlet Internal Linear Combination (GNILC), which we apply to sky simulations of the BINGO experiment for each redshift bin of the survey. We present our recovery of the redshifted 21-cm signal from sky simulations of the BINGO experiment including foreground components. We test the recovery of the 21-cm signal through the angular power spectrum at different redshifts, as well as the recovery of its non-Gaussian distribution through a bispectrum analysis. We find that non-Gaussianities from the original foreground maps can be removed down to, at least, the noise limit of the BINGO survey with such techniques. Our bispectrum analysis yields strong tests of the level of the residual foreground contamination in the recovered 21-cm signal, thereby allowing us to both optimize and validate our component separation analysis. (Abridged)
BINGO (Baryon Acoustic Oscillations from Integrated Neutral Gas Observations.) is a radio telescope designed to survey from 980 MHz to 1260 MHz, observe the neutral Hydrogen (HI) 21-cm line and detect BAO (Baryon Acoustic Oscillation) signal with Int ensity Mapping technique. Here we present our method to generate mock maps of the 21-cm Intensity Mapping signal covering the BINGO frequency range and related test results. (Abridged)
The 21-cm line of neutral hydrogen (HI) opens a new avenue in our exploration of the Universes structure and evolution. It provides complementary data with different systematics, which aim to improve our current understanding of the $Lambda$CDM model . Among several radio cosmological surveys designed to measure this line, BINGO is a single dish telescope mainly designed to detect Baryon Acoustic Oscillations (BAO) at low redshifts ($0.127 < z < 0.449$). Our goal is to assess the capabilities of the fiducial BINGO setup to constrain the cosmological parameters and analyse the effect of different instrument configurations. We will use the 21-cm angular power spectra to extract information about the HI signal and the Fisher matrix formalism to study BINGO projected constraining power. We use the Phase 1 fiducial configuration of the BINGO telescope to perform our cosmological forecasts. In addition, we investigate the impact of several instrumental setups and different cosmological models. Combining BINGO with Planck temperature and polarization data, we project a $1%$ and a $3%$ precision measurement at $68%$ CL for the Hubble constant and the dark energy (DE) equation of state (EoS), respectively, within the wCDM model. Assuming a CPL parametrization, the EoS parameters have standard deviations given by $sigma_{w_0} = 0.30$ and $sigma_{w_a} = 1.2$. We find that BINGO can also help breaking degeneracies in alternative models, which improves the cosmological constraints significantly. Moreover, we can access information about the HI density and bias, obtaining $sim 8.5%$ and $sim 6%$ precision, respectively, assuming they vary with redshift at three independent bins. The fiducial BINGO configuration will be able to extract significant information from the HI distribution and provide constraints competitive with current and future cosmological surveys. (Abridged)
We present full-sky maps of the cosmic microwave background (CMB) and polarized synchrotron and thermal dust emission, derived from the third set of Planck frequency maps. These products have significantly lower contamination from instrumental systematic effects than previo
Foreground components in the Cosmic Microwave Background (CMB) are sparse in a needlet representation, due to their specific morphological features (anisotropy, non-Gaussianity). This leads to the possibility of applying needlet thresholding procedur es as a component separation tool. In this work, we develop algorithms based on different needlet-thresholding schemes and use them as extensions of existing, well-known component separation techniques, namely ILC and template-fitting. We test soft- and hard-thresholding schemes, using different procedures to set the optimal threshold level. We find that thresholding can be useful as a denoising tool for internal templates in experiments with few frequency channels, in conditions of low signal-to-noise. We also compare our method with other denoising techniques, showing that thresholding achieves the best performance in terms of reconstruction accuracy and data compression while preserving the map resolution. The best results in our tests are in particular obtained when considering template-fitting in an LSPE like experiment, especially for B-mode spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا