ترغب بنشر مسار تعليمي؟ اضغط هنا

The BINGO Project III: Optical design and optimisation of the focal plane

116   0   0.0 ( 0 )
 نشر من قبل Ricardo Landim
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The BINGO telescope was designed to measure the fluctuations of the 21-cm radiation arising from the hyperfine transition of neutral hydrogen and aims to measure the Baryon Acoustic Oscillations (BAO) from such fluctuations, therefore serving as a pathfinder to future deeper intensity mapping surveys. The requirements for the Phase 1 of the projects consider a large reflector system (two 40 m-class dishes in a crossed-Dragone configuration), illuminating a focal plane with 28 horns to measure the sky with two circular polarisations in a drift scan mode to produce measurements of the radiation in intensity as well as the circular polarisation. In this paper we present the optical design for the instrument. We describe the intensity and polarisation properties of the beams and the optical arrangement of the horns in the focal plane to produce a homogeneous and well-sampled map after the end of Phase 1. Our analysis provides an optimal model for the location of the horns in the focal plane, producing a homogeneous and Nyquist sampled map after the nominal survey time. We arrive at an optimal configuration for the optical system, including the focal plane positioning and the beam behavior of the instrument. We present an estimate of the expected side lobes both for intensity and polarisation, as well as the effect of band averaging on the final side lobes. The cross polarisation leakage values for the final configuration allow us to conclude that the optical arrangement meets the requirements of the project. We conclude that the chosen optical design meets the requirements for the project in terms of polarisation purity, area coverage as well as homogeneity of coverage so that BINGO can perform a successful BAO experiment. We further conclude that the requirements on the placement and r.m.s. error on the mirrors are also achievable so that a successful experiment can be conducted.(Abridged)

قيم البحث

اقرأ أيضاً

The third-generation South Pole Telescope camera is designed to measure the cosmic microwave background across three frequency bands (95, 150 and 220 GHz) with ~16,000 transition-edge sensor (TES) bolometers. Each multichroic pixel on a detector wafe r has a broadband sinuous antenna that couples power to six TESs, one for each of the three observing bands and both polarization directions, via lumped element filters. Ten detector wafers populate the focal plane, which is coupled to the sky via a large-aperture optical system. Here we present the frequency band characterization with Fourier transform spectroscopy, measurements of optical time constants, beam properties, and optical and polarization efficiencies of the focal plane. The detectors have frequency bands consistent with our simulations, and have high average optical efficiency which is 86%, 77% and 66% for the 95, 150 and 220 GHz detectors. The time constants of the detectors are mostly between 0.5 ms and 5 ms. The beam is round with the correct size, and the polarization efficiency is more than 90% for most of the bolometers
The measurement of the diffuse $21$-cm radiation from the hyperfine transition of neutral hydrogen (HI signal) in different redshifts is an important tool for modern cosmology. However, detecting this faint signal with non-cryogenic receivers in sing le-dish telescopes is a challenging task. The BINGO (Baryon Acoustic Oscillations from Integrated Neutral Gas Observations) radio telescope is an instrument designed to detect baryonic acoustic oscillations (BAO) in the cosmological HI signal, in the redshift interval $0.127 le z le 0.449$. This paper describes the BINGO radio telescope, including the current status of the optics, receiver, observational strategy, calibration and the site. BINGO has been carefully designed to minimize systematics, being a transit instrument with no moving dishes and 28 horns operating in the frequency range $980 le u le 1260$ MHz. Comprehensive laboratory tests were conducted for many of the BINGO subsystems and the prototypes of the receiver chain, horn, polarizer, magic tees and transitions have been successfully tested between 2018-2020. The survey was designed to cover $sim 13%$ of the sky, with the primary mirror pointing at declination $delta=-15^{circ}$. The telescope will see an instantaneous declination strip of $14.75^{circ}$. The results of the prototype tests closely meet those obtained during the modelling process, suggesting BINGO will perform according to our expectations. After one year of observations with a 60% duty cycle, BINGO should achieve an expected sensitivity of $102 mu K$ for 28 horns and 30 redshift bins, considering one polarization and be able to measure the HI power spectrum in a competitive time frame.
During the austral summer of 2016-17, the third-generation camera, SPT-3G, was installed on the South Pole Telescope, increasing the detector count in the focal plane by an order of magnitude relative to the previous generation. Designed to map the p olarization of the cosmic microwave background, SPT-3G contains ten 6-in-hexagonal modules of detectors, each with 269 trichroic and dual-polarization pixels, read out using 68x frequency-domain multiplexing. Here we discuss design, assembly, and layout of the modules, as well as early performance characterization of the first-year array, including yield and detector properties.
In this paper, we present the design and the expected performance of the classical Lyot coronagraph for the high contrast imaging modes of the wide-field imager MICADO. MICADO is a near-IR camera for the Extremely Large Telescope (ELT, previously E-E LT), with wide-field, spectroscopic and coronagraphic capabilities. MICADO is one of the first-light instruments selected by the ESO. Optimized to work with a multi-conjugate adaptive optics corrections provided by the MOARY module, it will also come with a SCAO correction with a high-level, on-axis correction, making use of the M4 adaptive mirror of the telescope. After presenting the context of the high contrast imaging modes in MICADO, we describe the selection process for the focal plane masks and Lyot stop. We will also show results obtained in realistic conditions, taking into account AO residuals, atmospheric refraction, noise sources and simulating observations in angular differential imaging (ADI) mode. Based on SPHERE on-sky results, we will discuss the achievable gain in contrast and angular separation provided by MICADO over the current instruments on 10-m class telescopes, in particular for imaging young giant planets at very short separations around nearby stars as well as planets on wider orbits around more distant stars in young stellar associations.
The Cosmology Large Angular Scale Surveyor (CLASS) aims to detect and characterize the primordial B-mode signal and make a sample-variance-limited measurement of the optical depth to reionization. CLASS is a ground-based, multi-frequency microwave po larimeter that surveys 70% of the microwave sky every day from the Atacama Desert. The focal plane detector arrays of all CLASS telescopes contain smooth-walled feedhorns that couple to transition-edge sensor (TES) bolometers through symmetric planar orthomode transducer (OMT) antennas. These low noise polarization-sensitive detector arrays are fabricated on mono-crystalline silicon wafers to maintain TES uniformity and optimize optical efficiency throughout the wafer. In this paper, we discuss the design and characterization of the first CLASS 93 GHz detector array. We measure the dark parameters, bandpass, and noise spectra of the detectors and report that the detectors are photon-noise limited. With current array yield of 82%, we estimate the total array noise-equivalent power (NEP) to be 2.1 aW$sqrt[]{mathrm{s}}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا