ﻻ يوجد ملخص باللغة العربية
We prove the Lefschetz hyperplane section theorem using a simpler machinery by making the observation that we can compose the Lefschetz Pencil with a Real Morse function to get a map from the variety to $mathbb{R}$ which is close to being a Real Morse function. The proof uses a new method unlike the conventional one which uses vanishing cycles, thimbles and monodromy. We prove the genus formula for plane curves using Morse theory, Lefschetz pencil and Bezouts theorem. And then we prove the Riemann Hurwitz formula for ramified maps between curves by employing techniques from deformation theory. Lastly, we prove the Lefschetz Hyperplane Section Theorem solely using Real Morse Theory and exact sequences.
We develop the idea of self-indexing and the technology of gradient-like vector fields in the setting of Morse theory on a complex algebraic stratification. Our main result is the local existence, near a Morse critical point, of gradient-like vector
Noether-Lefschetz divisors in the moduli of K3 surfaces are the loci corresponding to Picard rank at least 2. We relate the degrees of the Noether-Lefschetz divisors in 1-parameter families of K3 surfaces to the Gromov-Witten theory of the 3-fold tot
Let $Z$ be a closed subscheme of a smooth complex projective variety $Ysubseteq Ps^N$, with $dim,Y=2r+1geq 3$. We describe the intermediate Neron-Severi group (i.e. the image of the cycle map $A_r(X)to H_{2r}(X;mathbb{Z})$) of a general smooth hypers
Let $Z$ be a closed subscheme of a smooth complex projective complete intersection variety $Ysubseteq Ps^N$, with $dim Y=2r+1geq 3$. We describe the Neron-Severi group $NS_r(X)$ of a general smooth hypersurface $Xsubset Y$ of sufficiently large degree containing $Z$.
The Yau-Zaslow conjecture determines the reduced genus 0 Gromov-Witten invariants of K3 surfaces in terms of the Dedekind eta function. Classical intersections of curves in the moduli of K3 surfaces with Noether-Lefschetz divisors are related to 3-fo