ترغب بنشر مسار تعليمي؟ اضغط هنا

A Fuzzy Scheduling Strategy for Workflow Decision Making in Uncertain Edge-Cloud Environments

68   0   0.0 ( 0 )
 نشر من قبل Bing Lin
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Workflow decision making is critical to performing many practical workflow applications. Scheduling in edge-cloud environments can address the high complexity of workflow applications, while decreasing the data transmission delay between the cloud and end devices. However, due to the heterogeneous resources in edge-cloud environments and the complicated data dependencies between the tasks in a workflow, significant challenges for workflow scheduling remain, including the selection of an optimal tasks-servers solution from the possible numerous combinations. Existing studies are mainly done subject to rigorous conditions without fluctuations, ignoring the fact that workflow scheduling is typically present in uncertain environments. In this study, we focus on reducing the execution cost of workflow applications mainly caused by task computation and data transmission, while satisfying the workflow deadline in uncertain edge-cloud environments. The Triangular Fuzzy Numbers (TFNs) are adopted to represent the task processing time and data transferring time. A cost-driven fuzzy scheduling strategy based on an Adaptive Discrete Particle Swarm Optimization (ADPSO) algorithm is proposed, which employs the operators of Genetic Algorithm (GA). This strategy introduces the randomly two-point crossover operator, neighborhood mutation operator, and adaptive multipoint mutation operator of GA to effectively avoid converging on local optima. The experimental results show that our strategy can effectively reduce the workflow execution cost in uncertain edge-cloud environments, compared with other benchmark solutions.

قيم البحث

اقرأ أيضاً

The Cloud infrastructure offers to end users a broad set of heterogenous computational resources using the pay-as-you-go model. These virtualized resources can be provisioned using different pricing models like the unreliable model where resources ar e provided at a fraction of the cost but with no guarantee for an uninterrupted processing. However, the enormous gamut of opportunities comes with a great caveat as resource management and scheduling decisions are increasingly complicated. Moreover, the presented uncertainty in optimally selecting resources has also a negatively impact on the quality of solutions delivered by scheduling algorithms. In this paper, we present a dynamic scheduling algorithm (i.e., the Uncertainty-Driven Scheduling - UDS algorithm) for the management of scientific workflows in Cloud. Our model minimizes both the makespan and the monetary cost by dynamically selecting reliable or unreliable virtualized resources. For covering the uncertainty in decision making, we adopt a Fuzzy Logic Controller (FLC) to derive the pricing model of the resources that will host every task. We evaluate the performance of the proposed algorithm using real workflow applications being tested under the assumption of different probabilities regarding the revocation of unreliable resources. Numerical results depict the performance of the proposed approach and a comparative assessment reveals the position of the paper in the relevant literature.
Kubernetes (k8s) has the potential to merge the distributed edge and the cloud but lacks a scheduling framework specifically for edge-cloud systems. Besides, the hierarchical distribution of heterogeneous resources and the complex dependencies among requests and resources make the modeling and scheduling of k8s-oriented edge-cloud systems particularly sophisticated. In this paper, we introduce KaiS, a learning-based scheduling framework for such edge-cloud systems to improve the long-term throughput rate of request processing. First, we design a coordinated multi-agent actor-critic algorithm to cater to decentralized request dispatch and dynamic dispatch spaces within the edge cluster. Second, for diverse system scales and structures, we use graph neural networks to embed system state information, and combine the embedding results with multiple policy networks to reduce the orchestration dimensionality by stepwise scheduling. Finally, we adopt a two-time-scale scheduling mechanism to harmonize request dispatch and service orchestration, and present the implementation design of deploying the above algorithms compatible with native k8s components. Experiments using real workload traces show that KaiS can successfully learn appropriate scheduling policies, irrespective of request arrival patterns and system scales. Moreover, KaiS can enhance the average system throughput rate by 14.3% while reducing scheduling cost by 34.7% compared to baselines.
This paper considers the scheduling of jobs on distributed, heterogeneous High Performance Computing (HPC) clusters. Market-based approaches are known to be efficient for allocating limited resources to those that are most prepared to pay. This conte xt is applicable to an HPC or cloud computing scenario where the platform is overloaded. In this paper, jobs are composed of dependent tasks. Each job has a non-increasing time-value curve associated with it. Jobs are submitted to and scheduled by a market-clearing centralised auctioneer. This paper compares the performance of several policies for generating task bids. The aim investigated here is to maximise the value for the platform provider while minimising the number of jobs that do not complete (or starve). It is found that the Projected Value Remaining bidding policy gives the highest level of value under a typical overload situation, and gives the lowest number of starved tasks across the space of utilisation examined. It does this by attempting to capture the urgency of tasks in the queue. At high levels of overload, some alternative algorithms produce slightly higher value, but at the cost of a hugely higher number of starved workflows.
With the advancement of technology, the data generated in our lives is getting faster and faster, and the amount of data that various applications need to process becomes extremely huge. Therefore, we need to put more effort into analyzing data and e xtracting valuable information. Cloud computing used to be a good technology to solve a large number of data analysis problems. However, in the era of the popularity of the Internet of Things (IoT), transmitting sensing data back to the cloud for centralized data analysis will consume a lot of wireless communication and network transmission costs. To solve the above problems, edge computing has become a promising solution. In this paper, we propose a new algorithm for processing probabilistic skyline queries over uncertain data streams in an edge computing environment. We use the concept of a second skyline set to filter data that is unlikely to be the result of the skyline. Besides, the edge server only sends the information needed to update the global analysis results on the cloud server, which will greatly reduce the amount of data transmitted over the network. The results show that our proposed method not only reduces the response time by more than 50% compared with the brute force method on two-dimensional data but also maintains the leading processing speed on high-dimensional data.
Edge computing has been developed to utilize multiple tiers of resources for privacy, cost and Quality of Service (QoS) reasons. Edge workloads have the characteristics of data-driven and latency-sensitive. Because of this, edge systems have develope d to be both heterogeneous and distributed. The unique characteristics of edge workloads and edge systems have motivated EdgeBench, a workflow-based benchmark aims to provide the ability to explore the full design space of edge workloads and edge systems. EdgeBench is both customizable and representative. It allows users to customize the workflow logic of edge workloads, the data storage backends, and the distribution of the individual workflow stages to different computing tiers. To illustrate the usability of EdgeBench, we also implements two representative edge workflows, a video analytics workflow and an IoT hub workflow that represents two distinct but common edge workloads. Both workflows are evaluated using the workflow-level and function-level metrics reported by EdgeBench to illustrate both the performance bottlenecks of the edge systems and the edge workloads.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا