ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Technologies in Space

130   0   0.0 ( 0 )
 نشر من قبل Rainer Kaltenbaek
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, the European Commission supported by many European countries has announced large investments towards the commercialization of quantum technology (QT) to address and mitigate some of the biggest challenges facing todays digital era - e.g. secure communication and computing power. For more than two decades the QT community has been working on the development of QTs, which promise landmark breakthroughs leading to commercialization in various areas. The ambitious goals of the QT community and expectations of EU authorities cannot be met solely by individual initiatives of single countries, and therefore, require a combined European effort of large and unprecedented dimensions comparable only to the Galileo or Copernicus programs. Strong international competition calls for a coordinated European effort towards the development of QT in and for space, including research and development of technology in the areas of communication and sensing. Here, we aim at summarizing the state of the art in the development of quantum technologies which have an impact in the field of space applications. Our goal is to outline a complete framework for the design, development, implementation, and exploitation of quantum technology in space.

قيم البحث

اقرأ أيضاً

Rare-earth ions in crystals are a proven solid-state platform for quantum technologies in the ensemble regime and attractive for new opportunities at the single ion level. Among the trivalent rare earths, ${}^{171}mathrm{Yb}^{3+}$ is unique in that i t possesses a single 4f excited-state manifold and is the only paramagnetic isotope with a nuclear spin of 1/2. In this work, we present measurements of the optical and spin properties of $^{171}$Yb$^{3+}$:YVO$_4$ to assess whether this distinct energy level structure can be harnessed for quantum interfaces. The material was found to possess large optical absorption compared to other rare-earth-doped crystals owing to the combination of narrow inhomogeneous broadening and a large transition oscillator strength. In moderate magnetic fields, we measure optical linewidths less than 3 kHz and nuclear spin linewidths less than 50 Hz. We characterize the excited-state hyperfine and Zeeman interactions in this system, which enables the engineering of a $Lambda$-system and demonstration of all-optical coherent control over the nuclear spin ensemble. Given these properties, $^{171}$Yb$^{3+}$:YVO$_4$ has significant potential for building quantum interfaces such as ensemble-based memories, microwave-to-optical transducers, and optically addressable single rare-earth-ion spin qubits.
This is a pre-publication version of a forthcoming book on quantum atom optics. It is written as a senior undergraduate to junior graduate level textbook, assuming knowledge of basic quantum mechanics, and covers the basic principles of neutral atom matter wave systems with an emphasis on quantum technology applications. The topics covered include: introduction to second quantization of many-body systems, Bose-Einstein condensation, the order parameter and Gross-Pitaevskii equation, spin dynamics of atoms, spinor Bose-Einstein condensates, atom diffraction, atomic interferometry beyond the standard limit, quantum simulation, squeezing and entanglement with atomic ensembles, quantum information with atomic ensembles. This book would suit students who wish to obtain the necessary skills for working with neutral atom many-body atomic systems, or could be used as a text for an undergraduate or graduate level course (exercises are included throughout). This is a near-final draft of the book, but inevitably errors may be present. If any errors are found, we welcome you to contact us and it will be corrected before publication. (TB: tim.byrnes[at]nyu.edu, EI: ebube[at]nyu.edu)
Regular arrays of two-level emitters at distances smaller that the transition wavelength collectively scatter, absorb and emit photons. The strong inter-particle dipole coupling creates large energy shifts of the collective delocalized excitations, w hich generates a highly nonlinear response at the single and few photon level. This should allow to implement nanoscale non-classical light sources via weak coherent illumination. At the generic tailored examples of regular chains or polygons we show that the fields emitted perpendicular to the illumination direction exhibit a strong directional confinement with genuine quantum properties as antibunching. For short interparticle distances superradiant directional emission can enhance the radiated intensity by an order of magnitude compared to a single atom focused to a strongly confined solid angle but still keeping the anti-bunching parameter at the level of $g^{(2)}(0) approx 10^{-2}$.
281 - Xiao-Feng Shi 2021
Exploring controllable interactions lies at the heart of quantum science. Neutral Rydberg atoms provide a versatile route toward flexible interactions between single quanta. Previous efforts mainly focused on the excitation annihilation~(EA) effect o f the Rydberg blockade due to its robustness against interaction fluctuation. We study another effect of the Rydberg blockade, namely, the transition slow-down~(TSD). In TSD, a ground-Rydberg cycling in one atom slows down a Rydberg-involved state transition of a nearby atom, which is in contrast to EA that annihilates a presumed state transition. TSD can lead to an accurate controlled-{footnotesize NOT}~({footnotesize CNOT}) gate with a sub-$mu$s duration about $2pi/Omega+epsilon$ by two pulses, where $epsilon$ is a negligible transient time to implement a phase change in the pulse and $Omega$ is the Rydberg Rabi frequency. The speedy and accurate TSD-based {footnotesize CNOT} makes neutral atoms comparable~(superior) to superconducting~(ion-trap) systems.
Scaling-up from prototype systems to dense arrays of ions on chip, or vast networks of ions connected by photonic channels, will require developing entirely new technologies that combine miniaturized ion trapping systems with devices to capture, tran smit and detect light, while refining how ions are confined and controlled. Building a cohesive ion system from such diverse parts involves many challenges, including navigating materials incompatibilities and undesired coupling between elements. Here, we review our recent efforts to create scalable ion systems incorporating unconventional materials such as graphene and indium tin oxide, integrating devices like optical fibers and mirrors, and exploring alternative ion loading and trapping techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا