ﻻ يوجد ملخص باللغة العربية
Autonomous robotic surgery has the potential to provide efficacy, safety, and consistency independent of individual surgeons skill and experience. Autonomous soft-tissue surgery in unstructured and deformable environments is especially challenging as it necessitates intricate imaging, tissue tracking and surgical planning techniques, as well as a precise execution via highly adaptable control strategies. In the laparoscopic setting, soft-tissue surgery is even more challenging due to the need for high maneuverability and repeatability under motion and vision constraints. We demonstrate the first robotic laparoscopic soft tissue surgery with a level of autonomy of 3 out of 5, which allows the operator to select among autonomously generated surgical plans while the robot executes a wide range of tasks independently. We also demonstrate the first in vivo autonomous robotic laparoscopic surgery via intestinal anastomosis on porcine models. We compared the criteria including needle placement corrections, suture spacing, suture bite size, completion time, lumen patency, and leak pressure between the developed system, manual laparoscopic surgery, and robot-assisted surgery (RAS). The ex vivo results indicate that our system outperforms expert surgeons and RAS techniques in terms of consistency and accuracy, and it leads to a remarkable anastomosis quality in living pigs. These results demonstrate that surgical robots exhibiting high levels of autonomy have the potential to improve consistency, patient outcomes, and access to a standard surgical technique.
Deep Reinforcement Learning (DRL) is a viable solution for automating repetitive surgical subtasks due to its ability to learn complex behaviours in a dynamic environment. This task automation could lead to reduced surgeons cognitive workload, increa
Purpose Surgical simulations play an increasingly important role in surgeon education and developing algorithms that enable robots to perform surgical subtasks. To model anatomy, Finite Element Method (FEM) simulations have been held as the gold stan
In contrast to manned missions, the application of autonomous robots for space exploration missions decreases the safety concerns of the exploration missions while extending the exploration distance since returning transportation is not necessary for
In minimal invasive surgery, it is important to rebuild and visualize the latest deformed shape of soft-tissue surfaces to mitigate tissue damages. This paper proposes an innovative Simultaneous Localization and Mapping (SLAM) algorithm for deformabl
Vitreoretinal surgery is challenging even for expert surgeons owing to the delicate target tissues and the diminutive 7-mm-diameter workspace in the retina. In addition to improved dexterity and accuracy, robot assistance allows for (partial) task au