ﻻ يوجد ملخص باللغة العربية
We investigate the emergence of quantum scars in a general ensemble of random Hamiltonians (of which the PXP is a particular realization), that we refer to as quantum local random networks. We find two types of scars, that we call stochastic and statistical. We identify specific signatures of the localized nature of these eigenstates by analyzing a combination of indicators of quantum ergodicity and properties related to the network structure of the model. Within this parallelism, we associate the emergence of statistical scars to the presence of motifs in the network, that reflects how these are associated to links with anomalously small connectivity (as measured, e.g., by their betweenness). Most remarkably, statistical scars appear at well-defined values of energy, predicted solely on the base of network theory. We study the scaling of the number of statistical scars with system size: below a threshold connectivity, we find that the number of statistical scars increases with system size. This allows to the define the concept of statistical stability of quantum scars.
Quantum circuits consisting of random unitary gates and subject to local measurements have been shown to undergo a phase transition, tuned by the rate of measurement, from a state with volume-law entanglement to an area-law state. From a broader pers
We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appea
The control of many-body quantum dynamics in complex systems is a key challenge in the quest to reliably produce and manipulate large-scale quantum entangled states. Recently, quench experiments in Rydberg atom arrays (Bluvstein et. al., arXiv:2012.1
The transport of excitations governs fundamental properties of matter. Particularly rich physics emerges in the interplay between disorder and environmental noise, even in small systems such as photosynthetic biomolecules. Counterintuitively, noise c
A quantum scar - an enhancement of a quantum probability density in the vicinity of a classical periodic orbit - is a fundamental phenomenon connecting quantum and classical mechanics. Here we demonstrate that some of the eigenstates of the perturbed