ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum local random networks and the statistical robustness of quantum scars

72   0   0.0 ( 0 )
 نشر من قبل Marcello Dalmonte
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the emergence of quantum scars in a general ensemble of random Hamiltonians (of which the PXP is a particular realization), that we refer to as quantum local random networks. We find two types of scars, that we call stochastic and statistical. We identify specific signatures of the localized nature of these eigenstates by analyzing a combination of indicators of quantum ergodicity and properties related to the network structure of the model. Within this parallelism, we associate the emergence of statistical scars to the presence of motifs in the network, that reflects how these are associated to links with anomalously small connectivity (as measured, e.g., by their betweenness). Most remarkably, statistical scars appear at well-defined values of energy, predicted solely on the base of network theory. We study the scaling of the number of statistical scars with system size: below a threshold connectivity, we find that the number of statistical scars increases with system size. This allows to the define the concept of statistical stability of quantum scars.



قيم البحث

اقرأ أيضاً

Quantum circuits consisting of random unitary gates and subject to local measurements have been shown to undergo a phase transition, tuned by the rate of measurement, from a state with volume-law entanglement to an area-law state. From a broader pers pective, these circuits generate a novel ensemble of quantum many-body states at their output. In this paper we characterize this ensemble and classify the phases that can be established as steady states. Symmetry plays a nonstandard role in that the physical symmetry imposed on the circuit elements does not on its own dictate the possible phases. Instead, it is extended by dynamical symmetries associated with this ensemble to form an enlarged symmetry. Thus we predict phases that have no equilibrium counterpart and could not have been supported by the physical circuit symmetry alone. We give the following examples. First, we classify the phases of a circuit operating on qubit chains with $mathbb{Z}_2$ symmetry. One striking prediction, corroborated with numerical simulation, is the existence of distinct volume-law phases in one dimension, which nonetheless support true long-range order. We furthermore argue that owing to the enlarged symmetry, this system can in principle support a topological area-law phase, protected by the combination of the circuit symmetry and a dynamical permutation symmetry. Second, we consider a gaussian fermion circuit that only conserves fermion parity. Here the enlarged symmetry gives rise to a $U(1)$ critical phase at moderate measurement rates and a Kosterlitz-Thouless transition to an area-law phase. We comment on the interpretation of the different phases in terms of the capacity to encode quantum information. We discuss close analogies to the theory of spin glasses pioneered by Edwards and Anderson as well as crucial differences that stem from the quantum nature of the circuit ensemble.
We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appea r in the context of many-body localization. Using the combination of the mapping onto $l$-bits and exact diagonalization results, we explicitly demonstrate the presence of these singularities for a candidate model that features many-body localization. Our work paves the way for understanding dynamical quantum phase transitions in the context of many-body localization, and elucidating whether different phases of the latter can be detected from analyzing the former. The results presented are experimentally accessible with state-of-the-art ultracold-atom and ion-trap setups.
The control of many-body quantum dynamics in complex systems is a key challenge in the quest to reliably produce and manipulate large-scale quantum entangled states. Recently, quench experiments in Rydberg atom arrays (Bluvstein et. al., arXiv:2012.1 2276) demonstrated that coherent revivals associated with quantum many-body scars can be stabilized by periodic driving, generating stable subharmonic responses over a wide parameter regime. We analyze a simple, related model where these phenomena originate from spatiotemporal ordering in an effective Floquet unitary, corresponding to discrete time-crystalline (DTC) behavior in a prethermal regime. Unlike conventional DTC, the subharmonic response exists only for Neel-like initial states, associated with quantum scars. We predict robustness to perturbations and identify emergent timescales that could be observed in future experiments. Our results suggest a route to controlling entanglement in interacting quantum systems by combining periodic driving with many-body scars.
The transport of excitations governs fundamental properties of matter. Particularly rich physics emerges in the interplay between disorder and environmental noise, even in small systems such as photosynthetic biomolecules. Counterintuitively, noise c an enhance coherent quantum transport, which has been proposed as a mechanism behind the high transport efficiencies observed in photosynthetic complexes. This effect has been called environmental-assisted quantum transport (ENAQT). Here, we propose a quantum simulation of the excitation transport in an open quantum network, taking advantage of the high controllability of current trapped-ion experiments. Our scheme allows for the controlled study of various different aspects of the excitation transfer, ranging from the influence of static disorder and interaction range, over the effect of Markovian and non-Markovian dephasing, to the impact of a continuous insertion of excitations. Our proposal discusses experimental error sources and realistic parameters, showing that it can be implemented in state-of-the-art ion-chain experiments.
A quantum scar - an enhancement of a quantum probability density in the vicinity of a classical periodic orbit - is a fundamental phenomenon connecting quantum and classical mechanics. Here we demonstrate that some of the eigenstates of the perturbed two-dimensional anisotropic (elliptic) harmonic oscillator are strongly scarred by the Lissajous orbits of the unperturbed classical counterpart. In particular, we show that the occurrence and geometry of these quantum Lissajous scars are connected to the anisotropy of the harmonic confinement, but unlike the classical Lissajous orbits the scars survive under a small perturbation of the potential. This Lissajous scarring is caused by the combined effect of the quantum (near) degeneracies in the unperturbed system and the localized character of the perturbation. Furthermore, we discuss experimental schemes to observe this perturbation-induced scarring.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا