ﻻ يوجد ملخص باللغة العربية
We conduct numerical experiments to determine the density probability distribution function (PDF) produced in supersonic, isothermal, self-gravitating turbulence of the sort that is ubiquitous in star-forming molecular clouds. Our experiments cover a wide range of turbulent Mach number and virial parameter, allowing us for the first time to determine how the PDF responds as these parameters vary, and we introduce a new diagnostic, the dimensionless star formation efficiency versus density ($epsilon_{rm ff}(s)$) curve, which provides a sensitive diagnostic of the PDF shape and dynamics. We show that the PDF follows a universal functional form consisting of a log-normal at low density with two distinct power law tails at higher density; the first of these represents the onset of self-gravitation, and the second reflects the onset of rotational support. Once the star formation efficiency reaches a few percent, the PDF becomes statistically steady, with no evidence for secular time-evolution at star formation efficiencies from about five to 20 percent. We show that both the Mach number and the virial parameter influence the characteristic densities at which the log-normal gives way to the first power-law, and the first to the second, and we extend (for the former) and develop (for the latter) simple theoretical models for the relationship between these density thresholds and the global properties of the turbulent medium.
We study density fluctuations in supersonic turbulence using both theoretical methods and numerical simulations. A theoretical formulation is developed for the probability distribution function (PDF) of the density at steady state, connecting it to t
The rich structure that we observe in molecular clouds is due to the interplay between strong magnetic fields and supersonic (turbulent) velocity fluctuations. The velocity fluctuations interact with the magnetic field, causing it too to fluctuate. U
The formation of astrophysical structures, such as stars, compact objects but also galaxies, entail an,enhancement of densities by many orders of magnitude which occurs through gravitational collapse. The role played by turbulence during this process
Externally driven interstellar turbulence plays an important role in shaping the density structure in molecular clouds. Here we study the dynamical role of internally driven turbulence in a self-gravitating molecular cloud core. Depending on the init
We present a simulation of isothermal supersonic (rms Mach number $mathcal{M}_{rm rms} sim 3$) turbulent gas with inertial particles (dust) and self-gravity in statistical steady-state, which we compare with a corresponding simulation without self-gr