ﻻ يوجد ملخص باللغة العربية
Recently, pure transformer-based models have shown great potentials for vision tasks such as image classification and detection. However, the design of transformer networks is challenging. It has been observed that the depth, embedding dimension, and number of heads can largely affect the performance of vision transformers. Previous models configure these dimensions based upon manual crafting. In this work, we propose a new one-shot architecture search framework, namely AutoFormer, dedicated to vision transformer search. AutoFormer entangles the weights of different blocks in the same layers during supernet training. Benefiting from the strategy, the trained supernet allows thousands of subnets to be very well-trained. Specifically, the performance of these subnets with weights inherited from the supernet is comparable to those retrained from scratch. Besides, the searched models, which we refer to AutoFormers, surpass the recent state-of-the-arts such as ViT and DeiT. In particular, AutoFormer-tiny/small/base achieve 74.7%/81.7%/82.4% top-1 accuracy on ImageNet with 5.7M/22.9M/53.7M parameters, respectively. Lastly, we verify the transferability of AutoFormer by providing the performance on downstream benchmarks and distillation experiments. Code and models are available at https://github.com/microsoft/AutoML.
We present BoTNet, a conceptually simple yet powerful backbone architecture that incorporates self-attention for multiple computer vision tasks including image classification, object detection and instance segmentation. By just replacing the spatial
Vision Transformer (ViT) demonstrates that Transformer for natural language processing can be applied to computer vision tasks and result in comparable performance to convolutional neural networks (CNN), which have been studied and adopted in compute
Extending the forecasting time is a critical demand for real applications, such as extreme weather early warning and long-term energy consumption planning. This paper studies the textit{long-term forecasting} problem of time series. Prior Transformer
A standard pipeline of current face recognition frameworks consists of four individual steps: locating a face with a rough bounding box and several fiducial landmarks, aligning the face image using a pre-defined template, extracting representations a
We present a conceptually simple but effective funnel activation for image recognition tasks, called Funnel activation (FReLU), that extends ReLU and PReLU to a 2D activation by adding a negligible overhead of spatial condition. The forms of ReLU and