ترغب بنشر مسار تعليمي؟ اضغط هنا

Clusters far-reaching influence on narrow-angle tail radio galaxies

436   0   0.0 ( 0 )
 نشر من قبل Kellie De Vos
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to study the ram-pressure interaction between radio galaxies and the intracluster medium, we analyse a sample of 208 highly-bent narrow-angle tail radio sources (NATs) in clusters, detected by the LOFAR Two-metre Sky Survey. For NATs within $7,R_{500}$ of the cluster centre, we find that their tails are distributed anisotropically with a strong tendency to be bent radially away from the cluster, which suggests that they are predominantly on radially inbound orbits. Within $0.5,R_{500}$, we also observe an excess of NATs with their jets bent towards the cluster core, indicating that these outbound sources fade away soon after passing pericentre. For the subset of NATs with spectroscopic redshifts, we find the radial bias in the jet angles exists even out to $10,R_{500}$, far beyond the virial radius. The presence of NATs at such large radii implies that significant deceleration of the accompanying inflowing intergalactic medium must be occurring there to create the ram pressure that bends the jets, and potentially even triggers the radio source.



قيم البحث

اقرأ أيضاً

Aims. Narrow-angle tailed (NAT) sources in clusters of galaxies can show on the large scale very narrow tails that are unresolved even at arcsecond resolution. These sources could therefore be classified as one-sided jets. The aim of this paper is to gain new insight into the structure of these sources, and establish whether they are genuine one-sided objects, or if they are two-sided sources. Methods. We observed a sample of apparently one-sided NAT sources at subarcsecond resolution to obtain detailed information on their structure in the nuclear regions of radio galaxies. Results. Most radio galaxies are found to show two-sided jets with sharp bends, and therefore the sources are similar to the more classical NATs, which are affected by strong projection effects.
We add 20, 6 and 3.6 cm wavelength VLA observations of two WATs, 1231+674 and 1433+553, to existing VLA data at 6 and 20 cm, in order to study the variations of spectral index as a function of position. We apply the spectral tomography process that w e introduced in our analysis of 3C67, 3C190 and 3C449. Both spectral tomography and polarization maps indicate that there are two distinct extended components in each source. As in the case of 3C449, we find that each source has a flat spectrum jet surrounded by a steeper spectrum sheath. The steep components tend to be more highly polarized than the flat components. We discuss a number of possibilities for the dynamics of the jet/sheath systems, and the evolution of their relativistic electron populations. While the exact nature of these two coaxial components is still uncertain, their existence requires new models of jets in FR I sources and may also have implications for the dichotomy between FR Is and FR IIs.
We present results from a study of seven large known head-tail radio galaxies based on observations using the Giant Metrewave Radio Telescope at 240 and 610 MHz. These observations are used to study the radio morphologies and distribution of the spec tral indices across the sources. The overall morphology of the radio tails of these sources is suggestive of random motions of the optical host around the cluster potential. The presence of the multiple bends an d wiggles in several head-tail sources is possibly due to the precessing radio jets. We find steepening of the spectral index along the radio tails. The prevailing equipartition magnetic field also decreases a long the radio tails of these sources. These steepening trends are attributed to the synchrotron aging of plasma toward the ends of the tails. The dynamical ages of these sample sources have been estimated to be ~100 Myr, which is a factor of six more than the age estimates from the radiative losses due to synchrotron cooling.
We have discovered a previously unreported poor cluster of galaxies (RGZ-CL J0823.2+0333) through an unusual giant wide-angle tail radio galaxy found in the Radio Galaxy Zoo project. We obtained a spectroscopic redshift of $z=0.0897$ for the E0-type host galaxy, 2MASX J08231289+0333016, leading to M$_r = -22.6$ and a $1.4,$GHz radio luminosity density of $L_{rm 1.4} = 5.5times10^{24}$ W Hz$^{-1}$. These radio and optical luminosities are typical for wide-angle tailed radio galaxies near the borderline between Fanaroff-Riley (FR) classes I and II. The projected largest angular size of $approx8,$arcmin corresponds to $800,$kpc and the full length of the source along the curved jets/trails is $1.1,$Mpc in projection. X-ray data from the XMM-Newton archive yield an upper limit on the X-ray luminosity of the thermal emission surrounding RGZ J082312.9+033301,at $1.2-2.6times10^{43}$ erg s$^{-1}$ for assumed intra-cluster medium temperatures of $1.0-5.0,$keV. Our analysis of the environment surrounding RGZ J082312.9+033301 indicates that RGZ J082312.9+033301 lies within a poor cluster. The observed radio morphology suggests that (a) the host galaxy is moving at a significant velocity with respect to an ambient medium like that of at least a poor cluster, and that (b) the source may have had two ignition events of the active galactic nucleus with $10^7,$yrs in between. This reinforces the idea that an association between RGZ J082312.9+033301, and the newly discovered poor cluster exists.
We have completed a deep radio continuum survey covering 86 square degrees of the Spitzer-South Pole Telescope deep field to test whether bent-tail galaxies are associated with galaxy clusters. We present a new catalogue of 22 bent-tail galaxies and a further 24 candidate bent-tail galaxies. Surprisingly, of the 8 bent-tail galaxies with photometric redshifts, only two are associated with known clusters. While the absence of bent-tail sources in known clusters may be explained by effects such as sensitivity, the absence of known clusters associated with most bent-tail galaxies casts doubt upon current models of bent-tail galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا