ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling Moral Traits with Music Listening Preferences and Demographics

59   0   0.0 ( 0 )
 نشر من قبل Vjosa Preniqi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Music is an essential component in our everyday lives and experiences, as it is a way that we use to express our feelings, emotions and cultures. In this study, we explore the association between music genre preferences, demographics and moral values by exploring self-reported data from an online survey administered in Canada. Participants filled in the moral foundations questionnaire, while they also provided their basic demographic information, and music preferences. Here, we predict the moral values of the participants inferring on their musical preferences employing classification and regression techniques. We also explored the predictive power of features estimated from factor analysis on the music genres, as well as the generalist/specialist (GS) score for revealing the diversity of musical choices for each user. Our results show the importance of music in predicting a persons moral values (.55-.69 AUROC); while knowledge of basic demographic features such as age and gender is enough to increase the performance (.58-.71 AUROC).



قيم البحث

اقرأ أيضاً

Personal electronic devices including smartphones give access to behavioural signals that can be used to learn about the characteristics and preferences of individuals. In this study, we explore the connection between demographic and psychological at tributes and the digital behavioural records, for a cohort of 7,633 people, closely representative of the US population with respect to gender, age, geographical distribution, education, and income. Along with the demographic data, we collected self-reported assessments on validated psychometric questionnaires for moral traits and basic human values and combined this information with passively collected multi-modal digital data from web browsing behaviour and smartphone usage. A machine learning framework was then designed to infer both the demographic and psychological attributes from the behavioural data. In a cross-validated setting, our models predicted demographic attributes with good accuracy as measured by the weighted AUROC score (Area Under the Receiver Operating Characteristic), but were less performant for the moral traits and human values. These results call for further investigation since they are still far from unveiling individuals psychological fabric. This connection, along with the most predictive features that we provide for each attribute, might prove useful for designing personalised services, communication strategies, and interventions, and can be used to sketch a portrait of people with a similar worldview.
One-shot anonymous unselfishness in economic games is commonly explained by social preferences, which assume that people care about the monetary payoffs of others. However, during the last ten years, research has shown that different types of unselfi sh behaviour, including cooperation, altruism, truth-telling, altruistic punishment, and trustworthiness are in fact better explained by preferences for following ones own personal norms - internal standards about what is right or wrong in a given situation. Beyond better organising various forms of unselfish behaviour, this moral preference hypothesis has recently also been used to increase charitable donations, simply by means of interventions that make the morality of an action salient. Here we review experimental and theoretical work dedicated to this rapidly growing field of research, and in doing so we outline mathematical foundations for moral preferences that can be used in future models to better understand selfless human actions and to adjust policies accordingly. These foundations can also be used by artificial intelligence to better navigate the complex landscape of human morality.
Autonomous Vehicles (AVs) raise important social and ethical concerns, especially about accountability, dignity, and justice. We focus on the specific concerns arising from how AV technology will affect the lives and livelihoods of professional and s emi-professional drivers. Whereas previous studies of such concerns have focused on the opinions of experts, we seek to understand these ethical and societal challenges from the perspectives of the drivers themselves. To this end, we adopted a qualitative research methodology based on semi-structured interviews. This is an established social science methodology that helps understand the core concerns of stakeholders in depth by avoiding the biases of superficial methods such as surveys. We find that whereas drivers agree with the experts that AVs will significantly impact transportation systems, they are apprehensive about the prospects for their livelihoods and dismiss the suggestions that driving jobs are unsatisfying and their profession does not merit protection. By showing how drivers differ from the experts, our study has ramifications beyond AVs to AI and other advanced technologies. Our findings suggest that qualitative research applied to the relevant, especially disempowered, stakeholders is essential to ensuring that new technologies are introduced ethically.
Online streaming services have become the most popular way of listening to music. The majority of these services are endowed with recommendation mechanisms that help users to discover songs and artists that may interest them from the vast amount of m usic available. However, many are not reliable as they may not take into account contextual aspects or the ever-evolving user behavior. Therefore, it is necessary to develop systems that consider these aspects. In the field of music, time is one of the most important factors influencing user preferences and managing its effects, and is the motivation behind the work presented in this paper. Here, the temporal information regarding when songs are played is examined. The purpose is to model both the evolution of user preferences in the form of evolving implicit ratings and user listening behavior. In the collaborative filtering method proposed in this work, daily listening habits are captured in order to characterize users and provide them with more reliable recommendations. The results of the validation prove that this approach outperforms other methods in generating both context-aware and context-free recommendations
Many researchers have studied student academic performance in supervised and unsupervised learning using numerous data mining techniques. Neural networks often need a greater collection of observations to achieve enough predictive ability. Due to the increase in the rate of poor graduates, it is necessary to design a system that helps to reduce this menace as well as reduce the incidence of students having to repeat due to poor performance or having to drop out of school altogether in the middle of the pursuit of their career. It is therefore necessary to study each one as well as their advantages and disadvantages, so as to determine which is more efficient in and in what case one should be preferred over the other. The study aims to develop a system to predict student performance with Artificial Neutral Network using the student demographic traits so as to assist the university in selecting candidates (students) with a high prediction of success for admission using previous academic records of students granted admissions which will eventually lead to quality graduates of the institution. The model was developed based on certain selected variables as the input. It achieved an accuracy of over 92.3 percent, showing Artificial Neural Network potential effectiveness as a predictive tool and a selection criterion for candidates seeking admission to a university.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا